箱根火山域における 2009 年機動的観測の概要

行竹洋平*·伊東 博*·板寺一洋*·原田昌武*·本多 亮*·棚田俊收*

Seismic observations by a temporary seismograph network in Hakone volcano

by

Yohei YUKUTAKE, Hiroshi ITO, Kazuhiro IITADERA, Masatake HARADA, Ryou HONDA and Toshikazu TANADA

1. はじめに

箱根火山は伊豆半島北端部に位置する第四紀火山で あり、有史以後にマグマ噴火があった記録はない。し かし、最近の研究(小林他、2006)により、12から13 世紀の間に水蒸気噴火が発生したことが明らかとなっ ている。さらに、箱根火山カルデラ内では、たびたび 有感地震を伴う群発地震が発生しており(例えば、平 賀、1987;萬年、2003)、最近では2001年に地殻変動 を伴う大規模な群発地震が発生した(例えば、代田ほか、 2009)。

箱根火山では、群発地震の発生に伴った温泉温度の 上昇から、群発地震と地下深部の熱源(マグ溜まり) からの熱水活動との関係が議論されてきた(Oki and Hirano, 1974; Matsuo et al., 1985; 萬年、2008)。萬年 (2008) は詳細な地質構造から箱根には複数の潜在カル デラが存在することを明らかにし、過去にそれらを形 成した古い火道が地下深部からの熱水の通り道となっ ている可能性を指摘した。群発地震がそうした熱水に よって引き起こされていることが十分に考えられる。 しかしながら、群発地震が発生する海抜 0km 付近から 深さ 5km までの範囲で、実際に熱水活動が存在してい る直接的な証拠は得られていない。より深部にあると 考えられている熱源のマグマ溜まりについても同様で ある。

我々は、地震学的なアプローチを用いて、これらのモ デルを検証するための新たな知見を得ることを試みる。 具体的には、地下を伝わる地震波の伝播時間を用いた3 次元速度トモグラフィー法により、箱根火山域におけ る高精度かつ高分解能の3次元地震波速度構造を推定 する。これまでも、箱根火山周辺域において、3次元 速度トモグラフィー法により3次元速度構造が推定さ れてきた(小田ほか、2002; Nakamichi et al., 2007)。こ

* 神奈川県温泉地学研究所 〒 250-0031 神奈川県小田原市入生田 586

れらの研究では、いずれも箱根火山下深さ 7-16km の範 囲に低速度域が検知されている。しかし、空間的な解 像度が 4-10km であり、上記のモデルの検証には至って いない。

その原因として、1. 地震観測点分布が十分に密では ない、あるいは2. 解析に使用した地震データ数が少 ないことが挙げられる。そこで我々は、機動的な観測 網を長期間にわたり設置することにより、多数の地震 データの取得を試みる。そうした大量の地震データを 用いて、過去の研究より高い分解能で箱根火山域にお ける3次元地震波速度構造を推定することを目指して いる。本論では、研究の第一段階として、2009(平成 21)年に設置した機動的地震観測の概要を報告する。 なお、本報告では定常的な観測点を空間的に補い高密 度な観測網を構築するために、一定期間設置する地震 観測点のことを「機動的観測」と定義する。

2. 機動的観測概要

2009(平成21)年5月末から8月中旬にかけて15点 の観測点を、箱根カルデラ内およびその周辺域に設置 した(図1および表1)。これらの観測点の設置により、 観測点間隔は温泉地学研究所定常観測点および防災科学 技術研究所Hi-net 定常観測点と併せて、中央火口丘周 辺で2km以下となった。さらにこれまで観測点カバー レッジの悪かった、カルデラ東部、南部および北東部に おいても、充実した観測網が構築できた。

機動的観測点の設置例として、三島観測点(T. MSM) の設置風景を、写真1に示す。この観測点では、高さ5 mに及ぶ巨大な溶岩露頭の一部に、固有周波数2Hzの 地震計を石膏で固定した。記録用データロガーとして DAT型記録レコーダー(篠原ほか、1997;羽田ほか、 1999)を用いた。三島観測点と同様に、その他8点の観

資料,神奈川県温泉地学研究所報告,第41卷,77-80,2009.

表1 観測点情報一覧

観測点名	地名	緯度	経度	標高(m)	Channel ID	設置日時	設置状況	ロガー種類	ゲイン(db)	A/Dビット数
T.KRK	鞍掛	35.177815	139.030856	905	9101-9103	2009/6/1	堰堤	DAT	60	16
T.MSM	三島	35.178280	138.975570	540	9111-9113	2009/5/28	露岩	DAT	60	16
T.NGO	長尾	35.263733	138.978140	880	9121-9123	2009/6/1	堰堤	DAT	60	16
T.KIN	金時	35.308224	139.033472	510	9131-9133	2009/6/1	コンクリート	DAT	60	16
T.HKE	箱根園	35.213522	139.009885	750	9141-9143	2009/6/4	コンクリート	DAT	60	16
T.YMO	湯本	35.220680	139.099797	455	9151-9153	2009/6/4	露岩	DAT	60	16
T.TKM	鷹の巣山	35.224210	139.054480	810	9161-9163	2009/6/4	露岩	DAT	60	16
T.OSB	大芝	35.213430	139.033750	920	1101-1103	2009/6/8	コンクリート	白山ロガー	20	24
T.KMB	上湯場	35.249030	139.021020	890	AA01-AA03	2009/6/8	堰堤	白山ロガー	20	24
T.KUN	久野	35.250165	139.062685	485	9171-9173	2009/6/8	堰堤	DAT	60	16
T.WRS	和留沢	35.268053	139.088028	365	9181-9183	2009/6/10	コンクリート	DAT	40	16
T.KMY	神山	35.228160	139.019940	1266	9041-9043	2009/6/29	コンクリート	計測ロガー	6	24
T.NTT	二の平	35.242300	139.036200	830	9011-9013	2009/6/30	コンクリート	近計ロガー	1	24
T.OSS	温泉荘	35.247650	139.004830	835	9031-9033	2009/6/30	コンクリート	白山ロガー	20	24
T.SJJ	最上寺	35.312807	139.067319	320	9201-9203	2009/8/14	露岩	近計ロガー	1	24

□ 防災科研Hi-net定常観測点

図1 設置された機動的観測点(15点)の分布(黒四角印)。三角印および白四角印は、温泉地学研究所(8点)ならびに防災科学技術研究所Hi-net(2点)の定常観測点の位置を表す。

測点の記録用データロガーにおいても DAT 型記録レコ ーダを使用した(表1)。DAT 型記録レコーダーで収録 された地震波形記録は、永井・棚田(2008)の手法に従い、 WIN フォーマットファイルに変換し解析に用いた。こ のほか、白山工業株式会社製データロガーおよび固有周 波数 2Hz 地震計の組み合わせの観測点が3点、計測技 研株式会社製データロガーおよび固有周波数 2Hz 地震 計の組み合わせが1 観測点、近計システム株式会社製デ ータロガーおよび固有周期 2Hz 地震計の組み合わせが2 観測点となっている(表1)。

写真1 三島観測点の写真

3. 記録地震波形例

箱根カルデラ湖尻付近で発生したイベントA(M=1.6) および丹沢山地域で発生したイベントB(M=2.8)(図2) について、機動的地震観測網によって観測された地震波 形記録上下動成分を図3および図4にそれぞれ示す。イ ベントAについては、直近に設置された長尾観測点(T. NGO)で波形が振り切れているが、すべての観測点で P 波の立ち上がりが明瞭に記録されていることが分かる。 丹沢山地下で発生した震央距離が 20km のイベントBに ついても、P波およびS波の立ち上がりについて明瞭に 読み取れることが分かる。機動的地震観測網では、箱根 カルデラ内で発生した地震だけではなく、丹沢山地など の周辺域で発生した地震についても、P波およびS波の 立ち上がりが明瞭に記録されている。機動的観測網によ り記録された地震波形記録を、定常観測点の記録と併せ て解析することにより、カルデラの浅い領域から、深さ 10km付近の深い領域に渡り詳細な3次元速度構造を推 定できることが期待できる。

図3および図4の和留沢観測点(T.WRS)および図 4の大芝観測点(T.OSB)では、電気ノイズが記録され

図2 記録された地震波形の震源位置。

ているが、それぞれ地震計からの信号のアースをとるこ とにより、現在は取り除かれている。また、図4の上湯 場観測点(T. KMB)では、地震波形が記録されていな いが、これは設置した地震計の初期不良によるものであ り、地震計を交換することにより現在は解決されている。

4. まとめ

我々は、箱根カルデラ内およびその周辺域において、 15 点の機動的地震観測点を設置した。これらの観測点 では、カルデラ内およびその周辺域で発生した地震につ いて、明瞭な地震波形を記録することができている。今 後は、観測点を維持管理するとともに、観測点カバーレ ッジの悪い領域についてはさらに追加の観測点を設置す る予定である。この機動的観測網を今後約1年半継続さ せ、記録された地震波形記録を用いて、箱根火山域にお ける詳細な3次元速度構造を推定する予定である。

謝辞

本研究は、神奈川県重点基礎研究推進事業(平成21 年度)として実施した。名古屋大学田所敬一博士から、 データロガーおよび地震計3セットを貸していただい た。京都大学飯尾能久博士には、データロガーおよび地 震計2セットを貸していただいた。台湾大学永井悟博 士には、DAT型データロガー記録の処理方法ならびに WIN 波形の処理方法について、さまざまなアドバイス をいただいた。三島市ならびに株式会社プリンスホテル には、観測点設置の許可をいただいた。記してここに謝 意を表します。

参考文献

- 代田寧・棚田俊收・丹保俊哉・伊東博・原田昌武・萬年 一剛(2009)2001年箱根群発地震活動に伴う傾斜 変動と圧力源の時間地震変化、火山、54,223-234.
- 羽田敏夫・酒井要・小林勝・橋本信一・井上義弘・三浦 禮子・田上貴代子・松原誠(1999) デジタルオー ディオ記録機(DAT レコーダー)を用いた地震観 測(1997-1998 東北合同観測),東京大学地震研究所 彙報, 5, 39-64.
- 平賀士郎 (1987) 箱根火山と箱根周辺海域の地震活動. 神奈川県温泉地学研究所報告, 18, 149-273.
- 小林淳・萬年一剛・奥野充・中村俊夫・袴田和夫(2006) 箱根火山大涌谷テフラ群 — 最新マグマ噴火後の水 蒸気爆発堆積物、火山、51、245-256.
- 永井悟・棚田俊收(2008) DAT型レコーダーを用いた 神奈川県西部における臨時地震観測、神奈川県温泉 地学研究所報告、60、69-74.
- 小田義也・棚田俊收・八巻和幸・伊東博(2002) 箱根 火山の3次元速度構造と震源の再決定、物理探査、 55、145-156.
- Oki, Y. and T.Hirano (1974) Hydrothermal System of the Hakone Volcano, Proceedings of a United State -Japan cooperative Science Seminor at Hilo, Hawaii, 153-166.
- 萬年一剛(2003)文献による箱根群発地震活動の再検討 (1917~1960);箱根群発地震活動の地学的意義、火 山、48、425-443.
- 萬年一剛(2008)箱根カルデラ 地質構造・成因・現在 の火山活動における役割 - 、神奈川県博調査研報(自 然)、13、61-76.
- Matsuo, S., Kurakabe, M., Niwano, M., Hirano, T., Oki, Y., Origin of thermal waters from the Hakone geothermal system, Japan, 1985, Geochemical Journal, 19, 27-44.
- Nakamichi, H., Watanabe, H., Ohminato, T., 2007, Threedimensional velocity structures of Mount Fuji and the South Fossa Magna, central Japan, J. Geophys, Res., 112, B03310, doi:10.1029/2005JB004161.
- 篠原雅尚・平田直・松田茂夫(1997) DAT を用いた GPS 時計付き低消費電力大容量デジタルレコーダ, 地震, 2, 50, 119-124.

図4 図2イベントBの機動的地震観測網で記録された地震波形(上下動成分)。