深層ボーリングによる下末吉台地および多摩丘陵上総層群の 石灰質ナンノ化石年代層序および地下地質

篠原謙太郎*、小沢 清*²、江藤哲人*³、田中裕一郎*⁴、川島眞一*⁵

Plio-Pleistocene calcareous nannofossil biostratigraphy from some deep boreholes in the Shimosueyoshi Plateau and Tama Hills, central Japan

by

Kentaro SHINOHARA*, Kiyoshi OZAWA*², Tetsuto ETO*³, Yuichiro TANAKA*⁴ and Shinichi KAWASHIMA*⁵

Abstract

Calcareous nannofossil biostratigraphy was investigated for deep drilling samples from the Tsurumi hot spring well in the Shimosueyoshi Plateau, and from three boreholes (Tama, Inagi and Machida boreholes) in the Tama Hills. The following conclusions were obtained. 1. The strata in the Tsurumi hot spring well is considered to be correlated to the Ikego Formation of the upper Miura Group, Urago, Nojima, Ofuna, Kamihoshikawa or Tsurukawa Formations of the Kazusa Group in ascending order. The geologic age is assigned to 2.7-2.6Ma for the Urago Formation, 2.6-2.0Ma for the Nojima Formation, 2.0-1.7Ma for the Ofuna Formation and the lower Kamihoshikawa (or Tsurukawa) Formation based on nannofossil biostratigraphy. 2. The Kazusa Group in the Tama borehole is considered to be divided to the Tsurukawa and Renkoji Formations in ascending order, in the Inagi borehole, to the Tsurukawa, Renkoji and Inagi Formations, and in the Machida borehole, to the Tsurukawa Formation. 3. Depth of the basal boundary of the Kazusa Group in the Tsurumi hot spring well is about 1200m beneath the sea level, about 400m shallower than expected in previous studies. 4. The depth of the Plio-Pleistocene boundary under the ground in the Fuchu observation well is deeper than that in the Tama borehole even if the inclination of those strata is taken into account. This difference in the depth is considered to be due to activities of the Tachikawa Fault.

1. はじめに

多摩丘陵は、神奈川県北東部から東京都南西部にかけ て位置し、北は多摩川の沖積低地、西は関東山地、南西 は相模原台地、南は三浦丘陵、東は下末吉台地によって 境され、北西~南東方向にひろがる。同丘陵には、鮮新 世末から更新世前期にかけて堆積した上総層群が広く分 布する。上総層群模式地である房総半島では、テフラ層 序に基づく層位学的研究(三梨ほか、1959 など)、古地磁 気(新妻、1976)、浮遊性微化石(Oda、1977;佐藤、高山、 1988 など)による編年、フィッション・トラック法によ る年代測定(鈴木、杉原、1983;原、楡井、1990)など多 くの研究が行われ、日本における鮮新 - 更新統の模式層 序の一つとされている。本研究地域である多摩丘陵では ローム層の層序については関東ローム研究グループ (1965)によって綿密な研究が行われている。丘陵下部の 上総層群の層序・構造については、徳永ほか(1949)、藤 本ほか(1961)、森(1969)、関東第四紀研究会(1970)、増 田(1971)、三梨ほか(1976、1979)、菊地(1982)、岡ほか (1984)、鈴木ほか(1995)など、古くから数多くの研究が ある。最近では高野(1994)が堆積サイクルおよびテフラ 鍵層に基づき層序・構造の再検討を行った。しかし、多 摩丘陵の上総層群の年代についての考察は少なく、高野 (1994)の中で石灰質ナンノ化石による平山層から飯室層 にかけての生層序年代の報告、および伊藤ほか(2002)に よる小山田層の2層準と柿生層の1層準の鍵層のフィッ ション・トラック年代の報告があるに過ぎず、全層準に わたる年代は明確になっていない。今回、この多摩丘陵 の上総層群の深層試錐3本および下末吉台地東端部に近 い温泉井を対象として、石灰質ナンノ化石を分析し、そ の生層序により、地層の年代を明確にした。

^{*} 川崎市立南大師中学校 〒210-0828 川崎市川崎区四谷上町24-1

^{*2} 神奈川県温泉地学研究所 〒250-0031 神奈川県小田原市入生田586

^{*3} 横浜国立大学教育人間科学部 〒240-8501 横浜市保土ヶ谷区常盤台79-2

^{*4} 産業技術総合研究所地質情報研究部門 〒305-8567 茨城県つくば市東1-1-1

^{*5} 東京都土木技術研究所地象部 〒136-0075 東京都江東区新砂1-9-15

論文,神奈川県温泉地学研究所報告,第37卷,1-14,2005.

Fig. 1 Outline of the deep borehole sites in the Tama Hills, southern Kanto Region, Kanagawa Prefecture and Tokyo Metropolitan. After Oka (1991). (Locations of the Tsurukawa flexure and the Mizonokuchi syncline from Kikuchi (1982) and Oka *et al*. (1984)).

2. 深層ボーリングの位置・深度

本研究で石灰質ナンノ化石分析に用いた地質試料を採取した深層ボーリングは、下末吉台地東端に近い横浜市 鶴見区における温泉井(鶴見温泉井)および多摩丘陵地域 で東京都土木技術研究所が水文地質調査のために掘削し た3試錐(多摩試錐、稲城試錐、町田試錐)である。位置 を下記および図1、2に示す(緯度、経度は世界測地系に よる)。

(1) 鶴見温泉井(TS、横浜 78 号)

掘削位置:横浜市鶴見区下末吉2丁目(北緯35°31 20.1、東経139°40259)。

> 下末吉台地東端部に近接した鶴見川下流部の 右岸側の旧河床に位置する。

- 掘削地点の標高および掘削深度:3m / 1500m (2)多摩試錐(TA)
- 掘削位置:多摩市関戸1513番地(北緯 35°39 4 、東 経 139°27 20)。

多摩川中流域の右岸側の旧河床に位置する。 掘削地点の標高および掘削深度:50.1m / 403.8m (3)稲城試錐 IN)

掘削位置:稲城市東長沼2358番地(北緯 35°38 12、 東経 139°30 24)。

> 多摩川中流域の右岸側の旧河床で、多摩試錐 の下流約 5km に位置する。

掘削地点の標高および掘削深度:36 5m / 508 0m (4)町田試錐(MA) 掘削位置:町田市野津田町 3305 番地 北緯 35°34

49 、東経 139°26 56)。

多摩丘陵の南部を西から東へ流下している鶴 見川の支流によって開析された小河谷に位置 する。

掘削地点の標高および掘削深度:61.7m / 505.5m

3. 地質の概要

多摩丘陵は南東部で下末吉台地へと続き(図1)、これ らの表層には関東ローム層および相模層群が分布し、下 位には上総層群が不整合をもって多摩丘陵の全域に分布 する(徳永ほか、1949;岡ほか、1984)。表1に多摩丘陵 における過去の研究の層序対照表を示す。

以下、高野(1994)によれば、多摩丘陵西部の八王子市 付近から川崎市付近にかけての上総層群は北北西 - 南南 東ないし北西 - 南東走向で北東に1~2度の緩い傾斜を している。上総層群の下位には、三浦層群が分布する。 鶴川撓曲(菊地、1982)を境に多摩丘陵西部と東部では上 総層群の層相が大きく異なる。多摩丘陵西部では、沈降 速度が小さかったため氷河性海水準変動の影響を受け、 最下部の寺田層を除き、基本的には6回の礫層 泥層 砂層の堆積サイクルから構成されている。この堆積サイ クルは、水深の変化に伴って河川 内湾性の干潟 外浜 への堆積環境の推移を示しており、累層単位に相当し、 厚さは 50 ~ 100m である。一方、南東部では氷河性海水 準変動の影響は受けているが、沈降速度が大きかったた め、鶴川撓曲付近の一部の地域で低海面期に陸化したの を除き、ほとんどの地域は常に海域であった。礫層や砂 がちの部分も一部の地域・層準に認められるが、主に泥 層ないし泥がちの砂泥互層からなる。南東部の砂泥互層 の部分にはスランプなどの乱堆積構造 王禅寺層、飯室 層、高津層)や、シルトブロックを多量に含む砂層(鶴川) 層、王禅寺層、などの異常堆積層が多く認められる。横 浜市南部では、上総層群はゆるやかにうねりつつ、ほぼ 東西の走向でわずかに北に傾斜している(三梨、菊地、 1982)

4. 層相

鶴見温泉井の層相は、10m毎に採取されたカッティン グスの観察結果および電気検層の結果とを総合して決定 した(図3)。なお、鶴見温泉井では、井戸口径が深度 200mと700mで、それぞれ小さくなっているため、同 深度付近において電気検層の結果に影響を及ぼしている 可能性がある。また、多摩丘陵のオールコアが採取され た3本の試錐(多摩試錐、稲城試錐、町田試錐)の層相に

Base map is "Musashifuchu".

Base map is "Mizonokuchi".

Base map is "Haramachida".

Base map is "Kawasaki".

図 2 深層ボーリングの位置図(国土地理院 1 / 25000 地形図 "武蔵府中"、"溝の口"、"原町田"、"川崎" 使用) TA: 多摩試錐、IN: 稲城試錐、MA: 町田試錐、TS: 鶴見温泉井

Fig. 2 Locality map of deep boreholes in the Tama Hills. After 1:25,000 scale topographic map "Musashifuchu", "Mizonokuchi", "Haramachida" and "Kawasaki" published by the Geographical Survey Institute, Japan.

TA:Tama borehole, IN:Inagi borehole, MA:Machida borehole, TS:Tsurumi hot spring well.

ついては、それぞれ川合ほか(1986、1987),川島ほか (1988)による(図4)。

4. 1. 鶴見温泉井

最上部約 30m は砂礫からなる。深度 30 ~ 340m は、 最上部がシルト混じりの砂礫層、上部がシルト層、中部 から下部にかけては砂層とシルト層との互層からなる。 深度 340 ~ 730m は、シルト岩を主とし、砂層を薄く挟 む互層からなる。深度 730 ~ 1120m は、上部が礫混じり 砂質シルト、中部が砂質シルトもしくはシルトと砂の互 層、下部が礫を含むシルトと砂の互層からなり、スコリ アやパミスを含む。深度 1120 ~ 1180m は、凝灰質砂層お よび礫層が優勢な地層からなる。深度 1180 ~ 1500m は、 上部から下部にかけて、凝灰質で礫混じりのシルトを主

表1 多摩丘陵の層序区分の対比(高野、1994) Table 1 Stratigraphic correlation of the Late Miocene to Pleistocene formations in the Tama Hills, After Takano (1994).

Takano 1994		Tokunaga	et al. 1949	Masuda	1971		
Western part	Eastern part	Western part	Eastern part	Western part	Eastern part	Western part	Eastern part
Sagami	Group	Narita	Group				
	Takatsu Fm.		Takatsu Fm.	0000	Takatsu Fm.		Takatsu Fm.
	limuro Fm.		limuro Fm.		limuro Fm.		limuro Fm.
Dedana Fm.	0	Ikuta Fm.	Ozenji Fm.	Ikuta Fm.	-		1:
	Ozenji Fm.		Kakio Fm.		Ozenji Fm.		o
Inagi Fm.		Isurukawa Fm.	Nara Fm.	Inagi Em		Inagi Fm.	Ozenji Fm.
indgi t th.	Kakio Fm.	Inagi Fm.	Kamihoshikawa	inagi Fm.	Kakio Fm.		
Renkoji Fm.			. Fm.		Tourukowa Em		Kakio Fm.
Oyamada Fm.	Tsurukawa Fm.	Renkoji Fm.		Renkoji Fm.	ISUIUKawa FIII.	Renkoji Fm.	Nara Fm.
Hirayama Fm.		Hirayama Fm.		Hirayama Fm.]	Hirayama Fm.	
Oyabe Fm.	1						
Terada Fm.		Oyabe Fm.		Oyabe Fm.		Oyabe Fm.	
Tate Fm.							
Kobotoke Group]	Kobotoke Group		Kobotoke Group]	Kobotoke Group	

体として砂を薄く挟む互層からなる。

4. 2. 多摩試錐

川合ほか(1986)は、本試錐をA~C層の3層に大別し、 さらにB層をB1、B2の2層に、C層をC1~C3に細分 した。

A 層(0 ~ 10.1m)

礫径 10 ~ 15cm の大礫(亜円 ~ 亜角)を含む砂礫層。礫 種は砂岩が多く、頁岩、礫岩、チャートもある。

B1層(10.1~45.5m)

10.1 ~ 16 2m;シルト混じり細粒砂層で黄褐色を呈す。 シルト混じりの部分には生痕が認められる。

16 2 ~ 26 .7m; 黄褐色細粒砂層。

26.7 ~ 41.0m; 黄褐色の細~粗粒砂層、粗粒砂の部分 には中礫(径2~3cm)が点在する。

41.0 ~ 45.5m; 緑灰色を呈する砂礫層。礫種は亜円~ 亜角の砂岩が多く、頁岩、チャートも認められる。

B2層(455~1473m)

45 5 ~ 53 5m; 暗灰色を呈し、淘汰がよい細粒砂層。 貝化石、腐植物の混入は認められない。

53 5 ~ 77 0m;暗青灰色を呈する、淘汰の良いシルト 混じり細粒砂層。全体的に腐植物、貝化石が認められる。

77 Ω ~ 88 Ωm;暗青灰色を呈し、淘汰のよい細粒砂層。 下部には貝化石、腐植物、軽石が混じる。 88 0 ~ 120 9m; 礫混じり細~中粒砂層。下部の 118m 付近には中礫が点在し、上部にはラミナ、重鉱物の密集 などが認められる。下部に貝化石の破片が認められる。

120 9 ~ 147 3m;暗青灰~暗灰色を呈するシルト混じ り細粒砂層。全体にわたって腐植物が混じり、上部に風 化した貝化石が認められる。140 5m 付近には木片、葉 片などを含み層状に密集している。

C1層(147 3 ~ 227 2 m)

暗灰色の固結した砂質シルト層を主体としている。最 上部は細粒砂の薄層との互層になっているが、深くなる にしたがって均一な砂質シルト層に移行している。腐植 物が上部に多く認められるが、下部には少ない。また貝 化石は上部に点在しているが、溶失しているものも認め られる。

C2層(227 2 ~ 255 8m)

暗灰色のシルト質細粒砂層。生痕化石、サンドパイプ が認められる。237 8 ~ 239 7m に淡灰色の火山灰層と、 239 7m に厚さ 3cm の層状軽石層が挟在している。また 255 2m には厚さ 1cm の赤褐色火山灰層が認められる。

C3層(255 & ~ 403 &m)

暗灰色の固結したシルト層。貝化石、腐植物が全体的 に点在し、上部にやや多く含まれる。また、生痕化石が 上部に多く認められる。395 3mに厚さ1cmの軽石・スコ リア層が、401 5mに厚さ10cmの淡灰色火山灰層があ

図4 多摩試錐・稲城試錐・町田試錐の地質柱状図および石灰質ナンノ化石の垂直分布

Columnar sections and vertical distributions of calcareous nannofossils from the Tama, Inagi and Machida boreholes. Fig.4 る。

4. 3. 稲城試錐

川合ほか(1987)は、本試錐を A ~ C 層の 3 層に大別し、 さらに C 層を C₁ ~ C₃に細分した。

A 層(0~13.7m)

下位は砂礫層、上位は表土層で構成される。

B 層(13.7~83.3m)

13.7 ~ 24.3m; 暗灰色のシルト質細粒砂層。腐植物、 貝化石、軽石が点在する。

24 3 ~ 29 0m;暗青灰色の砂質シルト層。最上部に腐 植物が層状に密集し、最下部に軽石が多く混入している。

29.0 ~ 50.6m; 暗灰色を呈する淘汰のよい細~中粒砂 層を主体とし、一部に礫混じりのシルト質の岩相部があ る。最上部付近(深さ30.1 ~ 31.4m)のシルト質な部分 には、貝化石が多く含まれ、二枚貝、巻貝、単体サンゴ が認められ、また、肉眼で有孔虫が観察される。

50.6 ~ 65.8m; 暗灰~暗青灰色の淘汰の良い細粒砂層。 65.8 ~ 69.9m; 暗灰色の砂質シルト。軽石が多く混入 している。特に、66.7 ~ 67.0mに密集している。66.3m、 69.8m、69.9mには各々、厚さ5cm、2cm、1cm で層状 に混入している。

69 9 ~ 83 3m;全体的に暗灰色のシルト混じり細粒砂 層。下部は砂質シルトとの細互層になっている。貝化石、 腐植物が僅かに認められる。

C1層(833~2118m)

83 3 ~ 204 5m; 全体的に固結した暗青灰~暗灰色の 砂質シルト岩層であるが、所々に細粒砂の薄層が挟在し ている。とくに最上部と深さ 135m 付近では互層状にな り、深さ 135 2m で小さな侵食面が観察された。貝化石 と腐植物が随所に認められる。92 9 ~ 94 0m には軽石 と火山灰、深さ 186 3 ~ 187 2m には軽石が混じり、深 さ 195 9m、199 6m には白色火山灰層がそれぞれ厚さ 15cm、厚さ 30cm で挟在している。また、僅かに木片、生 痕、ノジュールが認められる。

204 5 ~ 211 8m; 暗灰色の細~中粒砂層を主体とする が、最上部は砂質シルト層との細互層で、クロスラミナ やサンドパイプが認められる。また、最下部はシルト混 じりになっている。全体に少量の軽石が認められる。

C2層(211 8~448 5m)

211 8 ~ 310 5m; 青灰色の固結シルト層で、全体に均 質であるが、貝化石、腐植物、軽石が散見される。

310 5 ~ 353 0m;全体的に暗青灰色の砂質シルト層で、 下部は随所に細粒砂層を挟み、互層状態になっている。 軽石と火山灰が混じる。貝化石が全層準にわたり僅かに 認められる。

353.0 ~ 448 5m;暗青灰~暗緑灰色を呈し、固結した シルト層。軽石が随所に認められるほか、貝化石と腐植 物が僅かに認められる。全体的に火山灰が上部と下部に、 スコリアが中部と下部にそれぞれ認められる。

C₃ 層(448 5 ~ 508 .0m)

448 5 ~ 479 5m;全体に暗青灰色の砂質シルト層で、 細粒砂の薄層が多数挟在している。火山灰が2箇所に挟 在し、貝化石、腐植物、生痕およびノジュールが僅かに 散見される。

479 5 ~ 493 8m;砂質シルトと細粒砂の互層で暗青灰 色を呈している。砂質シルト、細粒砂ともに 10cm から 数 10cm の層厚で、リズミカルな互層を形成し、上位の砂 質シルト層と下位の細粒砂層との漸移層になっている。 下部に貝化石、腐植物、生痕とノジュールが僅かに認め られる。

493 8 ~ 508 0m;本試錐の最下部層にあたり、暗青灰 色の細粒砂層で構成される。上部と下部にシルト層を挟 む。シルト層には貝化石、腐植物が僅かに含まれる。

4. 4. 町田試錐

川島ほか(1988)は、本試錐をA~C層の3層に大別し、 さらにB層をB1、B2の2層に、C層をC1~C3に細分 した。

A 層(0~65m)

深さ4.1mを境として上位は褐色土層、下位は黒色土 層で構成される。

B1層(65~51.5m)

65~203m;細粒砂層を主体とするが、シルトが多 く含まれ、乱堆積物の様相を示している。182mには腐 植物が多く含まれている。また、174m以深にはヒメス ナホリムシの生痕化石が認められる。

203~515m;砂質シルト層。全体に暗青灰色を呈しているが、最下部は黄褐色となっている。腐植物は全層にわたって含まれている

B2層(515~925m)

51 5 ~ 58 2m; 黄褐色の砂礫層を主体とし、礫は径 1 ~ 6cmの亜円礫である。上部の54.7m以浅にはほとんど 礫を含まない。

58 2 ~ 92 5m; 砂層とシルト層の互層。砂層の厚さは 0 3 ~ 4 3m、シルト層の厚さは 0 6 ~ 2.7m で、全体と しては砂層が優勢である。72 6m には木片をはじめ腐植 物が多い。火砕物が 72 6m、81 .1m および 92 5 ~ 93 .1m に僅かに混じる。

C1層(925~1689m)

92.5~148.2m; 緑灰~暗灰色の砂質シルト層。全体 的に均一で、固結している。貝化石と腐植物が全層にわ たって認められる。

148 2 ~ 168 9m; 暗灰色のシルト質細粒砂層。全体的 に良く締まっている。貝化石、腐植物が全層にわたって 認められ、168 3m に軽石が認められる。また、151 9m にはシルトパイプの生痕化石が認められる。

C2層(168.9~464.4m)

緑灰~灰色を呈する固結した砂質シルト層。 貝化石や 腐植物が全層にわたって認められる。軽石がしばしば混 じるほか、上位で認められなかったスコリアも所々に点 在している。また、生痕化石も比較的良く認められ、と くに 368m 以深にはサンドパイプが多い。

C3層(464 4~505 5m)

細粒砂層を主体とするが、シルトが薄層状に挟在して、 部分的には互層状を呈している。色調は暗灰~青灰色で あり、ラミナがよく認められる。貝化石、腐植物が点在 する。465.7mに厚さ3cmの火山灰・軽石層、468.3mに 厚さ2cmの軽石・スコリア層が挟在する。なお、最下部 付近の 504 2m および 504 9m では木片化石が認められ る。

5. 石灰質ナンノ化石分析用試料の採取および処理

鶴見温泉井については、10m毎に150ヵ所で採取され たカッティングス試料を対象とした。カッティングス試 料のうち原則として 50m 毎、計 30 試料を使用し、軟泥 部を80メッシュのふるいの上で洗って取り除き、岩芯片 を採集し、分析用試料とした(表2)。

多摩試錐、稲城試錐、町田試錐については東京都土木

 11
 15
 32
 55
 25
 31
 31
 29
 21
 34
 88
 73

0 0 0 0 0 0 0

TSURU

miliania lacun

SDD

eticulofenestra

TOTAL

E2 鶴見温泉井	もの そ	5灰	質ナ	・ン ,	化	石分	析約	吉果																						
able 2 Species c	omp	osit	ion	of c	alca	arec	ousi	nanı	nofo	ossil	ls in	cut	tting	g sa	mpl	es f	rom	I Tsi	urun	ni h	ot s	prin	g we	ell.						
TSURUMI																														
Sample number	Ts30	Ts29	Ts28	Ts27	Ts26	Ts25	Ts24	Ts23	Ts22	Ts21	Ts20	Ts19	Ts18	Ts17	Ts16	Ts15	Ts14	Ts13	Ts12	Ts11	Ts10	Ts 9	Ts 8	Ts 7	Ts 6	Ts 5	Ts 4	Ts 3	Ts 2	Ts 1
Spp. Depth(m)	50	100	140	200	250	300	340	400	450	500	550	600	650	690	750	800	850	900	950	990	1050	1100	1150	1210	1250	1300	1350	1400	1450	1500
Abundance	A	Α	Α	Α	Α	С	Α	Α	С	С	Α	С	R	R	R	F	R	R	F	F	F	С	F	R	R	R	F	F	F	F
Preservation	G	G	G	G	G	М	G	G	М	М	G	М	Ρ	Ρ	Р	Р	Р	Ρ	Р	Р	Ρ	Ρ	Р	Р	Р	Ρ	Ρ	Р	Р	Р
Calcidiscus leptoporus	10	4	13	9	22	4	8	3	14	11	13	13	5	2	4	4	9	12	3	2	8	9	3	4	7	2	5	7	3	2
Calcidiscus macintyrei	0	1	7	1	1	0	2	4	11	6	2	7	7	2	0	2	3	4	0	4	3	3	6	2	6	9	5	14	4	1
Ceratolithus cristatus	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coccolithus pelagicus	1	21	5	12	9	5	4	6	19	- 11	7	26	3	3	41	15	16	3	6	7	9	7	2	6	2	0	5	16	3	0
Discoaster brouweri	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	*	1	3	1	1	1	1	*	1	1	2	1	0	0	1
Discoaster pentaradiatus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	*	0	1	1	0	1	2	0	*
Discoaster surculus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1	*	0	0	0	1	*	*	*
Discoaster tamalis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	*	0	0
Discolithina japonica	0	0	0	3	0	0	0	0	0	0	1	0	0	0	- 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Florisphaera profunda	13	3	8	2	0	0	9	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gephyrocapsa caribbeanica	85	0	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gephyrocapsa oceanica	54	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gephyrocapsa spp.(small)	21	75	29	14	18	13	17	10	6	28	7	12	124	102	53	24	51	65	44	48	49	32	61	72	37	78	118	55	86	115
Gephyrocapsa spp.(large)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Helicosphaera carteri	0	2	1	9	6	0	2	2	0	0	7	5	0	0	0	3	0	0	0	0	0	0	0	1	2	0	0	2	0	1
Helicosphaera sellii	0	1	0	3	0	0	0	0	0	2	1	0	0	1	2	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Halioomhanna walliahi	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0

技術研究所が保管しているオールコアサンプリング法で 得られたコアのうち、多摩試錐25ヵ所、稲城試錐32ヵ 所、町田試錐32ヵ所をカッターで削り新鮮な面を出し、

石灰質ナンノ化石の分析は、ごく少量の試料を、22 × 40mm のカバーグラス上に載せ、水をスポイトで一滴落 とし、平たい爪楊枝でペースト状に試料を塗り広げ、こ れを約100 のホットプレート上で乾燥させた。次いで スライドグラスの中央部に光硬化剤を塗り、先に乾燥さ せた塗布試料をスライドグラスに載せ、これに紫外線を 照射し、光硬化剤を硬化させてプレパラートを作成した。

プレパラートは偏光顕微鏡を用いて 1500 倍で検鏡し、 鶴見温泉井のカッティングス試料については1試料につ き石灰質ナンノ化石の総個体数が200個、多摩、稲城、 町田の各試錐については総個体数が100個を目安に計数 した。

6. 石灰質ナンノ化石分析結果

分析用試料を採取した(表3)。

本研究では石灰質ナンノ化石基準面とその年代値に Sato et al (1991)と佐藤ほか(1999)を用いた。これらは DSDP-IPOD Leg 94 において最上部新生界に確認された 石灰質ナンノ化石基準面と古地磁気層序の関係および基 準面の年代値を照らし合わせ、初出現基準面を FAD、最 終出現基準面を LAD で表し、21 の基準面を定めている。

また、Raffi et al (1993) や高山ほか(1995) が指摘して いるように、Gephyrocapsa 属の分類には、研究者間に よって、その同定が定まっていないのが現状である。そ こで、今回は、Sato et al (1991)と Raffi et al (1993)の分 類基準に従って、同定を行った。すなわち、長軸が4µm

12

4

0 0

8 6 19 11

> 97 61 97 101

2

3

75

200

9 11

0

0 0

Abundance: A=abundant. C=common. F=few. R=rare. Preservation: G=good. M=moderate. P=poor. *: species observed after counting 200 specimens.

0 0 0

8 12

77 106 88 127 147 127 149 126 109 72 63 53 77 91 141 112 108 137 126 115 142 120 107 125

8 10

0

8

0

5

表 3 多摩試錐、稲城試錐、町田試錐の石灰質ナンノ化石分析結果

Table 3 Species composition of calcareous nannofossils in core samples from Tama, Inagi and Machida boreholes.

TAMA					INAGI				MACHIDA							
Sample numb	er	Ta22	Ta10	Ta 4	In30	In20	In15	In13	In12	In 7	In 1	Ma23	Ma15	Ma14	Ma13	Ma 6
Spp. Depth	(m)	72.7	243.1	354.8	30.2	173.1	244.0	290.1	309.6	413.2	506.1	143.7	232.3	269.5	288.2	399.4
Abundance		R	R	R	R	С	С	F	Α	С	С	R	R	С	С	С
Preservation		Р	Ρ	Р	Р	М	М	М	G	М	М	P	Р	М	М	М
Calcidiscus leptoporus		5	1	11	2	1	1	3	3	8	12	4	6	6	15	18
Calcidiscus macintyrei		0	0	0	0	0	0	0	0	0	1	0	0	0	0	6
Coccolithus pelagicus		6	0	39	5	3	1	12	1	3	16	2	16	4	7	6
Discolithina japonica		10	1	3	0	0	0	1	1	0	0	1	1	0	0	0
Gephyrocapsa caribbea	nica	32	33	0	6	8	29	9	72	0	0	14	6	1	1	0
Gephyrocapsa oceanica	1	59	9	0	4	9	11	10	18	0	0	8	4	1	0	0
Gephyrocapsa spp.(sn	nall)	48	34	13	10	32	27	49	4	30	61	28	36	14	32	13
Helicosphaera carteri		7	0	1	7	1	0	3	3	1	1	3	0	4	2	4
Helicosphaera sellii		1	0	1	0	0	0	1	0	0	0	0	0	0	0	1
Pseudoemiliania lacunos	sa	1	1	9	0	1	1	0	1	16	6	1	6	16	6	15
Reticulofenestra spp.		34	20	26	17	45	31	13	1	43	57	28	25	58	59	43
TOTAL		203	99	103	51	100	101	101	104	101	154	89	100	104	122	106

Abundance: A=abundant. C=common. F=few. R=rare. Preservation: G=good. M=moderate. P=poor.

以上のサイズの標本について、*Gephyrocapsa carribbeanica* ならびに *G.oceanica* と認定し、それ以下のサイズについ ては、*Gephyrocapsa* spp(small)として一括した。さらに、 5 5 µm 以上のサイズを *Gephyrocapsa* spp(large)とした。

鶴見温泉井および多摩丘陵の上記3試錐について、石 灰質ナンノ化石を分析し、産出した試料の結果および対 応する基準面を、表2、3、および図3、4にそれぞれ示 す。以下、それらの示準種の産出状況および基準面を記 述する。

6. 1. 鶴見温泉井

深度 1300m、 1400m で *Discoaster tamalis* の産出が認め られた。また深度 1050m、1100m、1150m、1350m、1400m、 1450m、1500m で *Discoaster surculus* の産出が、深度 990m、 1100m、 1210m、 1250m、 1350m、 1400m、 1500m で *Discoaster pentaradiatus* の産出が認められ、さらに深度 690m 以深では 750m、 1400m、 1450m を除いて *Discoaster brouweri* の産出が認められたことにより、深度 1250m と 1300m の間に Sato *et al* (1991)の石灰質ナンノ化石の基 準面 18(2.74Ma)が、深度 990m と 1050m との間に基準面 17(2.54Ma)、深度 950m と 990m の間に基準面 16(2.38 Ma)、深度650m と 690m の間に基準面 13(1.97Ma)が認定 された。

また、深度 200m には *Gephyrocapsa caribbeanica* の初産 出が認められたことから、深度 200m と 250m の間に基準 面 12(1.73Ma)、また、下位から深度 100m まで *Calcidiscus macintyrei* が産出し深度 50m で産出が見られ なくなること、さらに深度 140m で *Gephyrocapsa oceanica* が初産出することから 140mと 200mの間に基準面 11 (1 65Ma)が認定される。また、最上位の深度 50m に *Gephyrocapsa* spp (large)の産出が認められなかったこと から、50m は、基準面 10(1 45Ma)より下位に相当する。

6. 2. 多摩試錐

深度72.7m、243.1m から*G oceanica とG caribbeanica* の 産出が認められ、354.8m からは認められないことから、 深度243.1m と354.8m 間に基準面11と12が認定される。 一方、*Gephyrocapsa* spp(large)の産出は、最上位の深度 72.7m でも認められなかった。

6. 3. 稲城試錐

深度 506 .1m から*Calcidiscus macintyrei* が産出し、309 6 m から *G oceanica* と *G caribbeanica* の初産出が認められ たことから、深度 309 6m と 413 2m の間に基準面 11 と 12 が認定される。*Gephyrocapsa* spp (large)の産出は、最 上位の深度 30 2m でも認められなかった。

6. 4. 町田試錐

深度 288 2m から *G caribbeanica* の初産出が、269 5m から *G .oceancia* の初産出がそれぞれ認められたことか ら、深度 288 2m と 399m の間に基準面 12 が、269 5m と 288 2m の間に基準面 11 が認定される。

また、最上位の深度143.7mでも*Gephyrocapsa* spp. (large)の産出が認められなかった。 7. 対比および年代

7.1. 鶴見温泉井

本井の位置する鶴見川の沖積低地の下には、岡ほか (1984)によると埋没谷が存在するとされ、その基底高度 は本地点において標高約 - 10 ~ - 20mである。したがっ て本論では、本試錐の最上部約 30m の砂礫層を沖積層と する。

深度 30 ~ 340m は、最上部がシルト混じりの砂礫層、 上部がシルト層、中部から下部にかけては砂層とシルト 層との互層からなる。岡ほか(1984)の5万分の1地質図 「東京西南部」では、本井の西方約500m に位置する下末 吉台地の基底部において上総層群鶴川層が露出するとさ れる。本試錐の深度30~340mの層相が鶴川層と類似す ることおよび前述の埋没谷が同層を削剥して形成された と考えられるので、本区間の地層は鶴川層と判断される。 なお鶴見地域では、鶴川層の下半部は上総層群上星川層 と同時異相の関係にあるとされる(岡ほか、1984)ので、 本区間の下部は上星川層に対比されるともいえる。

深度 340 ~ 730m は、シルト岩を主とし、砂層を薄く 挟む。本層の上位にある上星川層は三梨・菊池(1982)に よると、横浜南部に分布する上総層群小柴層に対比され ており、小柴層の下位には上総層群大船層が整合で位置 する。したがって、層相および層位学的位置から、本区 間の地層は大船層であると考えられる。なお、藤岡ほか (2003)は、横浜市港南台南方に分布する大船層および小 柴層から産する石灰質ナンノ化石を検討し、小柴層下部 に基準面 10(1.45Ma)および同層最下部に基準面11(1.65 Ma)を、大船層の上部に基準面12(1.73Ma)を認定した。 一方、本試錐では、小柴層に相当する鶴川層(上星川層) 中に基準面 11 および 12 が認定された。本研究ではカッ ティングス試料の観察によって鶴川層と大船層の境界を 深度 340m としたが、石灰質ナンノ化石分析の結果から、 本試錐における両層の境界は深度 340m よりも浅い位置 にある可能性がある。

深度 730 ~ 1120m は、上部が礫混じり砂質シルト、中 部が砂質シルトもしくはシルトと砂の互層、下部が礫お よびスコリアやパミスを含むシルトと砂の互層からなる。 同層が層位学的に大船層の下位に位置することおよび層 相から、本区間は上総層群野島層と考えられる。

野島層の地質年代について、江藤ほか(1987)は同層中 部層準に浮遊性有孔虫 *Globoratalia truncatulinoides*の産出 下限があるとした。この層準は、オルドバイサブクロン の直下(197Ma)とされている(Oda、1977)。また彼らは、 逗子層上部から野島層中部層準にかけて CN12d の上限 を規定する *Discoaster brouweri*が産出するとした。 CN12dの上限は佐藤ほか(1999)の基準面13(1 97Ma)に 相当する。本試錐では、基準面13は大船層下部に認めら れ、基準面16(2 38Ma)および基準面17(2 54Ma)が野島 層に認められた。したがって本研究の結果は江藤ほか (1987)の結果と一致しない。

深度1120~1180mは、凝灰質砂層および礫層が優勢な 地層からなる。同層が層位学的に野島層の下位に位置す ることおよび層相から、同区間は上総層群最下部の浦郷 層と考えられる。

深度 1180 ~ 1500m は、上部から下部にかけて、凝灰 質で礫混じりのシルトを主体として砂を薄く挟む互層か らなる。江藤ほか(1998)は、三浦半島北部において、上 総層群浦郷層が、三浦層群池子層に平行不整合ないし軽 微な傾斜不整合で重なるとしている。本区間の地層が層 位学的に浦郷層の下位に位置することおよび層相から、 同区間は三浦層群池子層と考えられる。なお本研究では、 池子層上部に石灰質ナンノ化石基準面 18(2.74Ma)が認 定された。江藤ほか(1987、Table 4)では、池子層最上部 の層準に Discoaster surculus の産出上限を認めている。 これは佐藤ほか(1999)の基準面 17(2.54Ma)に相当する。 前述のように本研究では野島層中に基準面 17 が認めら れており、江藤ほか(1987)の結果と一致しない。

上記のように、野島層以深の年代については、本研究 と江藤ほか(1987)との結果に不一致が認められた。江藤 ほか(1987)の研究は主に三浦半島において行われたもの であることから、本井の位置する横浜地域では上総層群 の堆積開始年代が三浦半島よりも早かった可能性がある。

7. 2. 多摩試錐

川合ほか(1986)のA層(0~10.1m)は、大礫を含む砂 礫層からなり、本試錐の掘削地点は多摩川中流域の旧河 床に位置することから、本層は沖積層と判断される。

B₁層(10.1~45.5m)は、上部から中部(10.1~41.0m) にかけての細~粗粒砂層および下部の砂礫層(41.0~45.5 m)からなる。本試錐の掘削位置は、高野(1994)の第.1図 にある 25 地点露頭の東方約 2km に位置し、同露頭では、 下位より連光寺層および稲城層が露出するとされている。 また同論文の地質図(第3図)においても多摩試錐の南西 方約6~700mの丘陵の基部に連光寺層が見られるとさ れる。さらに岡ほか(1984)は、本試錐の掘削地点に近い 多摩市連光寺の桜ヶ丘保養院東の多摩川河岸において、 連光寺層と稲城層の境界があるとしている。したがって B₁層は連光寺層であると判断される。

B₂ 層(455~1473m)は、細粒砂層(455~535m)、 シルト混じり細粒砂層(535~77.0m)、細粒砂層(77.0 ~ 88 0m) 礫混じり細~中粒砂層(88 0~ 120 9m)およ びシルト混じり細粒砂層(120 9~ 147 3m)からなる。高 野(1994)は、多摩丘陵西部の上総層群は、礫層(河川)-泥層(内湾)-砂層(外浜)の堆積サイクルからなり、1つ の堆積サイクルを1累層として区分した。しかし、川合 ほか(1986)は、底生有孔虫の産出状況からB2層は内部 大陸棚の堆積物であるとしているので、高野(1994)の層 序区分を本試錐にそのまま適用することは適当ではない。

C層は、C1層(1473~2272m)が砂質シルト層、C2層 (2272~2558m)がシルト質細粒砂層、C3層(2558~ 4038m)がシルト層よりなり、川合ほか(1986)は底生有 孔虫の産出状況からこれを外部大陸棚の堆積物であると している。これも同様に高野(1994)の層序区分を適用す ることは適当ではない。高野(1994)は、鶴川撓曲付近を 境に、連光寺層から下位の地層は鶴川層と指交関係にあ るとしている。したがって、本試錐の掘削位置は鶴川撓 曲より西方に位置するものの、B2層から下位の地層は鶴 川層に対比すべきと判断される。

なお、鶴川層とした B₂層以下の地層において、相対的 に粗粒な堆積物を低海水準期の、細粒な堆積物を高海水 準期の堆積物とすると、45 5m~120 9m、120 9m~255 8 m、255 8m~403 8m の3つの相対的海水準変動(海進、 海退)に対応した堆積サイクルに区分することができ、 それぞれ 45 5m~120 9m が小山田層、120 9m~255 8 m が平山層、255 8m~403 8m が大矢部層に相当する堆 積物である可能性がある。

本試錐では、石灰質ナンノ化石年代より、深度 243.1m と 354 8m 間に基準面 11(1 65Ma)と 12(1 .73Ma)が認定 された。これはともに鶴川層中に位置する。なお、前述 のように本試錐の B2層以下の地層がそれぞれ小山田層、 平山層、大矢部層に相当する堆積物であるとすると、基 準面 11 は平山層相当層下部に、基準面 12 は大矢部層相 当層の中に位置することになる。高野ほか(1994)は平山 層上部の石灰質ナンノ化石年代を1 36 - 1 57Maと報告 している。これは佐藤ほか(1999)の石灰質ナンノ化石年 代に読み替えると、1 45 - 1 65Maであり、本研究の結 果と調和的である。また伊藤ほか(2002)は、小山田層中 に挟在するテフラ(第2図師タフ、第2堀之内タフ)の フィッション・トラック年代をそれぞれ14±0.1、1.7± 0 2Maと報告した。これも本研究の結果と矛盾しない。

7. 3. 稲城試錐

川合ほか(1987)の A 層(0 ~ 13.7m)は、砂礫層および 表土層からなる。本試錐の掘削地点は多摩川の旧河床に 位置することから、本層は沖積層と判断される。 B 層(13.7~83.3m)は、シルト質細粒砂層(13.7~24.3m)、砂質シルト層(24.3~29.0m)、一部礫混じりの細~中粒砂層(29.0~50.6m)、細粒砂層(50.6~65.8m)、砂質シルト(65.8~69.9m)およびシルト混じり細粒砂層(69.9~83.3m)から構成される。高野(1994)の堆積サイクルによる地層区分にしたがうと、13.7~50.6m区間の地層が1つの堆積サイクルに相当すると考えられる。本試錐は、岡ほか(1984)の5万分の1地質図「東京西南部」のA-A'断面上にほぼ位置し、同地点付近では、沖積層の下位に稲城層が分布するとされる。したがってこの13.7~50.6m区間の地層は稲城層と考えられる。

C1層(833~211 &m)は、細粒砂の薄層を挟在する砂 質シルト層(833~204 5m)細~中粒砂層(2045~211 & m)からなる。深度135 2mに軽微な不整合が認められる ことから、B層の下部(50 6m~83 3m)とC層の上部(833 ~135 2m)を合わせた区間が1つの堆積サイクルに相当 すると判断される。本区間(50 6m~135 2m)は稲城層 の下位に位置することから、連光寺層であると考えられ る。

C2層(211.8~448.5m)は、シルト層(211.8~310.5m)、 砂質シルト層(3105~353.0m)、シルト層(353.0~4485 m)からなる。川合ほか(1987)によると、底生有孔虫の産 出から C2 層は外洋半深海の堆積環境を示すとされる。 また C₃層(448 5 ~ 508 .0m)は、砂質シルト層(448 5 ~ 479 5m) 砂質シルトと細粒砂の互層(479 5~493 8m) および細粒砂層(493 8~508 0m)からなり、外洋浅海の 堆積環境を示すとされる。したがって本試錐の 135 2m 以深の地層においては、高野(1994)の河川から外浜にか けての堆積物を1サイクルとして区分する多摩丘陵西部 地域の層序区分をそのまま適用することは適当ではない。 なお、高野(1994)は、鶴川撓曲付近を境に、稲城層は柿 生層と、連光寺層から下位の地層は鶴川層と指交関係に あるとしている。本試錐の掘削位置は鶴川撓曲近傍(北 方約2 5km)に位置することから、本試錐の135 2mより 下位の地層は、鶴川層に対比されると思われる。

7. 4. 町田試錐

川島ほか(1988)の A 層(0~65m)は、褐色土層および 黒色土層で構成され、本試錐の掘削位置は鶴見川支流の 小河谷にあることから、本層は沖積層であると判断され る。

沖積層の下位に位置するB層およびC層は、細粒砂(65~203m)、砂質シルト(203~515m)、砂礫(515~582 m)、砂・シルト互層(582~925m)、砂質シルト(925~1482m)、シルト質細粒砂(1482~168.6m)、砂質シ

 TA:多摩試錐 BF:防災科研府中井 OI:落川・一の宮遺跡
 図5 立川断層の位置図(1:25,000都市圏活断層図"青梅"、"八 王子"から作成)

Fig. 5 Locality map of the Tachikawa fault (After 1:25,000 scale Active Fault Map in Urban Area "OME" and "HACHIOJI" published by the Geographical Survey Institute,Japan.)

ルト(1689~464 4m)およびシルトの薄層を挟在する細 粒砂(4644~5055m)で構成され、全体として砂質シル トが優勢な地層からなる。珪藻化石および底生有孔虫の 産出から、本試錐の最下部から1689mまでは外洋・沿 岸性の、その上位は淡水性~汽水性の環境を示すとされ る。したがってこれらの地層の全体が鶴川層と考えられ る。

8. 地下地質構造

鶴見温泉井の付近は関東構造盆地において、上総層群 相当層が厚い地域と考えられている(鈴木、2002)。鈴木 (2002)の上総層群相当層の基底深度分布図から鶴見温泉 井の位置での基底深度を読みとると、標高約 - 1600mで ある。これと比較すると、鶴見温泉井の地質から判断さ れた上総層群の基底深度は、約400m浅い。

多摩試錐 図5のTA)の東北東約14kmの多摩川対岸 (左岸)に位置する防災科学技術研究所府中地殻活動観測 井(以下、防災科研府中井という。標高44.71m。図5の BF)では、石灰質ナンノ化石基準面12(1.73Ma)が深度 930m(標高約 - 885m)にある(林ほか、2004)。一方、多 摩試錐においては、*Gephyrocapsa caribbeanica*がTa4(深度

354 .8m)で産出せず、Ta10(243.1m)で産出することから 基準面 12 は Ta4 と Ta10 の間にある。基準面 12 を Ta4 直上と仮定すると、標高約 - 304m である。多摩試錐付 近での地表の上総層群は、北西 - 南東ないし北北西 - 南 南東走向で北東に1~2度の緩い傾斜を示す(高野、 1994)が、地下深部の地層の傾斜は堆積盆地の沈降運動 等の影響を受け、大きくなっている可能性がある。鈴木、 高橋(1985)によると、防災科研府中井では、上総層群を 深度 1061m で上部層と下部層に区分しており、上部層の 地層傾斜検層結果の3度ごとの頻度分布図をみると、6 ~ 9 度が最も多く 28% を占め、次いで 0~3 度が 26% を占める。全体としては、18度以下が93%、21~27度 が7%である。傾斜方向は、深度930m付近の地層では東 ~ 南方向が多い。また、上総層群下部層では、3~6度が 最も多く37%を占める。全体としては、15度以下が98%、 30~33度が2%である。傾斜方向は最上部層で南東~南 西および西方向が多い。

防災科研府中井の上総層群上部層の地層傾斜角が18 度以下で全体の93%を占めることから、深度930m(基準 面12)の上総層群が西南西方向に多摩試錐に向かって傾 斜18度で上がり続くと仮定すると、多摩試錐の位置での 基準面12相当層準の深度は標高約 - 430mと推定される。 しかしながら本研究の結果、実際の多摩試錐における基 準面12は、標高約 - 304mよりも上部にあることが判明 した。したがって両井の間では、北東側の上総層群が少 なくとも約120m以上落ち込んでいることが考えられる。

多摩試錐および防災科研府中井の付近の多摩川左岸に は立川断層の存在が知られている(図5)。立川断層は、 山崎(1978)によれば、地表地形や露頭観察から、北西-南東走向の活断層であり、北東側隆起の逆断層で、横ず れは認められないとされている。東郷ほか(1996)によれ ば、南部の多摩川右岸の落川・一の宮遺跡(図5のOI)で 見られた断層の調査では、横ずれが卓越するが、これは 立川断層の走向が南北に近い方向に変化したためではな いかと推定している。一方、多田(1983)は、重力調査結 果から地表地形の北東側隆起と反対に、基盤断層は400 ~ 500m 北東側落ちの断層で、活断層としての立川断層 はこの古い基盤断層の痕跡が最近の応力状態に支配され て再活動したと考えた。萩原ほか(1988)および萩原 (1989)は、稠密な重力調査から基盤の立川断層北部での 北東側隆起、中央部~南部での北東側落ちを考えざるを 得ないことを北東側降起の縦ずれと左横ずれ断層の組み 合わせで説明している。山口ほか(1998)によれば、反射 法探査結果から立川断層は立川市砂川付近では垂直の断 層であり、深度 300~600mの地層は北東側約 100mの 隆起に対し、深度1000m付近の先新第三紀の基盤は 100mの北東側落ちであり、断層運動は北東側落ち-活 動休止-北東側隆起へ反転という経過をたどり、現在に 至ったとされている。東京都(1999)は、山口ほか(1998) よりも南東約12kmの立川市泉町での反射法探査から、 先新第三系~下部新第三系からなる基盤の上面は深度 800~900mとした。また、上位の堆積層は断層帯と判断 される位置で撓曲構造を示し、基盤の上面は堆積層の構 造と調和的であるとした。

鈴木・高橋(1985)は、防災科研府中井の基盤が著しく 破砕されていることにより、近傍を構造線または断層が 通っていると推定し、これが秩父帯と四万十帯を境する (仏像)構造線の可能性または立川断層とも考えられると している。

本論で明らかとなった、多摩試錐と防災科研府中井に おける173Ma相当層準に推定される高度差は、更新世 前期頃まで続く古い立川断層の運動によって生じた可能 性がある。しかし、地表で見られる立川断層の多摩川右 岸側への延長は、多摩試錐の位置より西北西約17kmと 考えられている(東郷ほか、1996)ので、浅部を切る断層 は更新世前期以降に深部を切る断層から分岐した可能性 が考えられる。

9. まとめ

本研究では、下末吉台地(鶴見)および多摩丘陵(多摩、 稲城、町田)の深層ボーリング4本を対象として、上総層 群の石灰質ナンノ化石を検討し、その生層序に基づいて 各構成層の地質年代を決定し、さらに上総層群の地下地 質構造について考察を行った。それらの結果は以下のよ うにまとめられる。

- (1) 鶴見温泉井のカッティングスによる層相観察、電気検層の結果から、その層序は下位から三浦層群池 子層、上総層群浦郷層、野島層、大船層および上星川 層(または鶴川層)に区分されることが分かった。
- (2) 石灰質ナンノ化石年代から鶴見温泉井の上総層群 最下部の浦郷層の堆積は2.7Ma ごろに始まり、野島 層の堆積年代は約2.6 - 2.0Ma、大船層~鶴川層(上 星川層)下部は約2.0 - 1.7Ma であると考えられる。
- (3) 鶴見温泉井での上総層群の基底深度は、従来考えられていたよりも約400m 浅い標高約 1200m であることが明らかになった。
- (4) 多摩丘陵地域の上記3カ所の深層ボーリングにおける層序を高野(1994)に従い再検討した。その結果、 多摩試錐は上位から上総層群連光寺層および鶴川層に、稲城試錐は上位より稲城層、連光寺層および鶴

川層に、町田試錐は鶴川層に区分される可能性が高 いことがわかった。

(5) 多摩試錐と防災科研府中井の間において、基準面 12(1,73Ma)相当層準に高度差が推定され、更新世前 期の立川断層の運動によって生じた可能性がある。

謝辞

本論文は、横浜国立大学教育学研究科理科教育専攻地 球科学専修における平成13年度に提出した篠原の修士 論文を基として、その後、石灰質ナンノ化石の同定を再 点検し、全体の修正・加筆を行ってまとめたものである。 篠原は、本研究を進めるにあたり、修士課程在籍中、小 池敏夫博士、有馬 眞博士、間嶋隆一博士、石川正弘博 士には、貴重なご助言やご批判をいただき、また、地学 教室の学生の皆様にはゼミ等で議論していただいた。地 質調査については、増渕和夫氏(川崎市青少年科学館) 高野繁昭博士(法政大学)に貴重なご助言をいただいた。 鶴見温泉井の地質試料については、特殊プラント工業株 式会社(担当・石川憲一氏)から貴重なサンプルおよび検 層図をいただいた。また、三梨 昂博士から有意義なご 助言をいただいた。以上の方々と関係機関に厚くお礼申 し上げます。

参考文献

- 江藤哲人、尾田太良、長谷川四郎、本田信幸、船山政昭 (1987) 三浦半島中・北部の新生界の微化石生層序年 代と古環境,横浜国大理科紀要,第2類,34,41-57.
- 江藤哲人、矢崎清貫、ト部厚志、磯部一洋(1998)横須
 賀地域の地質,地域地質研究報告(5万分の1地質図
 幅),地質調査所,128p.
- 藤本治義、寿円晋吾、羽鳥謙三(1961) 多摩丘陵の地質, 東京都文化財調査報告(10), 1-23.
- 藤岡導明、亀尾浩司、小竹信宏(2003) テフラ鍵層に基 づく横浜地域の大船層・小柴層と房総半島の黄和田層 との対比,地質雑,109,166-178.
- 萩原幸男、村田一郎、長沢 工、井筒屋貞勝、小竹美子、 大久保修平(1988) 活断層の重力調査(4)-立川断層 の検出-,地震研彙報,63,115-129.
- 萩原幸男(1989) 立川断層は左横ずれか,活断層研究, (6),37-41.
- 原 雄、楡井 久(1990) 黄和田層下部のフィッション トラック年代,地質雑,96、397-400.
- 林 広樹、堀内誠示、高橋雅紀、笠原敬司(2004) 関東 平野地下に分布する新第三系の層序と対比,石油技術 協会誌,69,404-416.

- 伊藤久敏、谷口友規、篠原謙太郎、江藤哲人(2002) 多 摩丘陵の前期更新世テフラのフィッション・トラック 年代測定,第四紀研究,41,421-426.
- 川合将文、川島眞一、遠藤 毅、石井 求(1986) 多摩 市付近の水文地質,昭 61 都土木技研年報,317-325.
- 川合将文、川島眞一、遠藤 毅、石井 求(1987) 稲城 市付近の水文地質,昭 62 都土木技研年報,353-362.
- 川島眞一、川合将文、遠藤 毅、石井 求 1988)町田 市付近の水文地質,昭63都土木技研年報,205-214.
- 関東第四紀研究会(1970) 南関東の下部更新統 多摩丘 陵の三浦層群について - , 第四紀研究 , 9, 93-100.
- 関東ローム研究グループ(1965) 関東ローム その起源 と性状 - ,築地書館,378p.
- 菊地隆男(1982) 上総層群の堆積構造と関東構造盆地に おける位置,地団研専報(24),67-78.
- 国土地理院(1996) 1:25000都市圏活断層図,「八王子」, 「青梅」(財)日本地図センター.
- 増田富士夫(1971) 多摩丘陵の地質について,地質雑, 77,153-164.
- 三梨 昂、安国 昇、品田芳二郎(1959) 千葉県養老川・ 小櫃川の上総層群の層序,地調月報,10,82-98.
- 三梨 昂、那須紀幸、楡井 久ほか(1976、1979) 東京
 湾とその周辺地域の地質(初版)説明書,特殊地質図
 (20),地質調査所,91p.
- 三梨 昂、菊地隆男(1982) 横浜地域の地質,地域地質研究報告(5万分の1地質図幅),地質調査所,105p.
- 森 和雄(1969) 武蔵野台地および多摩丘陵北部の地下 地質構造,地質調査所報告(233),13p.
- 新妻信町(1976) 房総半島における古地磁気層位学,地 質雑,82,163-181.
- ODA , M (1977) Planktonic foraminiferal biostratigraphy of the Late Cenozoic sedimentary sequence ,Central Honshu , Japan Sci Rep .Tohoku Univ . , 2nd Ser.(Geology), 48 , 1-72 .
- 岡 重文(1991) 関東地方南西部における中・上部更新 統の地質,地調月報,42,553-653.
- 岡 重文、菊池隆男、桂島 茂 1984) 東京西南部地域の地質,地域地質研究報告(5万分の1地質図幅),地質調査所,148p.
- Raffi , I . Backman , L . Rio , D . Shackleton , N . J (1993) Plio-Pleistocene nannofossil biostratigraphy and calibration

to oxygen isotope stratigraphies from deep sea drilling project site 607 and ocean drilling program site 677. Paleoceangraphy, 8, 387-407.

- 佐藤時幸、高山俊昭(1988) 石灰質ナンノプランクトン による第四系化石帯区分,地質学論集(30),205-217.
- SATO, T., KAMEO, K., and TAKAYAMA, T(1991)
 Coccolith biostratigraphy of the Arabian Sea. In Prell,
 W.L., Niitsuma, N., et al/. Proc. ODP, Sci. Results, 117:
 College Station, TX (Ocean Drilling Program), 37-54.
- 佐藤時幸、亀尾浩司、三田 勲(1999) 石灰質ナンノ化 石による後期新生代地質年代の決定精度とテフラ層序, 地球科学,53,265-274.
- 鈴木宏芳(2002) 関東平野の地下構造,防災科研報, (63),1-19.
- 鈴木宏芳、高橋 博(1985) 府中地殻活動観測井の作井 と坑井地質,国立防災科学技術センター研究速報, (64),84p.
- 鈴木正男、杉原重夫(1983) フィッショントラック年代 から見た上総層群の鮮新 / 更新世境界,第四紀学会演 旨(13),69-70.
- 鈴木尉元、小玉喜三郎、三梨 昂、遠藤 毅、奈須紀幸
 ほか(1995) 10万分の1東京湾とその周辺地域の地質
 (第2版)説明書,特殊地質図(20),地質調査所,109p.
- 多田 堯 (1983) 関東平野の基盤構造と重力異常(2)-活断層の地球物理学的研究-,地震2,36,359-372.
- 高野繁昭(1994) 多摩丘陵の下部更新統上総層群の層序, 地質雑,100,675-691.
- 高山俊昭、佐藤時幸、亀尾浩司、後藤登美子(1995)第 四系石灰質ナンノ化石層序と鮮新統/更新統境界の年 代値,第四紀研究,34,157-170.
- 東郷正美、佐藤比呂志、池田安隆、松多信尚、増淵和夫、 高野繁昭(1996) 立川断層の最新活動について,活断 層研究(15),1-8.
- 徳永重元、郷原保真、桑野幸夫(1949) 多摩丘陵の地質,資源科学研究所彙報(14), 43-60.
- 東京都(1999) 立川断層に関する調査概要報告書,49p.
- 山口和雄、加野直己、横倉隆伸、木口 努、田中明子、佐藤比呂志(1998) 反射法による立川断層の地下構造, 活断層研究(17),54-64.
- 山崎晴雄(1978) 立川断層とその第四紀後期の運動,第 四紀研究,16,231-246.