地下水汚染の浄化対策

- 小規模事業所の場合 -

粟屋 徹*、板寺一洋*、小沢 清*、横山尚秀*

Countermeasures for Cleaning Groundwater Pollution of Organic Chloride Compounds

by

Tohru AWAYA*, Kazuhiro ITADERA*, Kiyoshi OZAWA* and Takahide YOKOYAMA*

1. はじめに

汚染された地下水や土壌の浄化を効率よく、しかも安価 に行うことは、特に汚染源が小規模事業所の場合、切実に もとめられる。

筆者らは、神奈川県内の臨海部で発生した有機塩素系化 合物による地下水汚染について、ドラム缶を利用した安価 な浄化装置を設置して地下水中の有機塩素系化合物濃度を 短期間で低下させることに成功した。

本稿では、今後の参考のために、この事例について実態の把握から浄化対策の実施、その後のモニタリングまでの 過程を報告する。

2. 地下水汚染の判明

平成7年3月頃、関係自治体により有機塩素系化合物使用事業所の周辺井戸の水質調査が行われ、地下水汚染が判明した。ガスクロマトグラフ法による分析方法でトリクロロエチレン、テトラクロロエチレン(以下、PCE という。) 1,1,1-トリクロロエタンを測定したところ、一部の井戸でPCE が検出された。

その結果をみると、小規模事業所(以下、事業所という。)付近の調査井戸35地点のうち、地下水のPCE濃度の最大値は1.4mg/I(No.5)であり、それを含めて1mg/I以上が2地点、0.1mg/I以上1mg/I未満が9地点、0.01mg/I以上0.1mg/I未満が5地点であった(図1-A、B)。

3.表層土壌調査

周辺井戸の水質調査結果を基にして、地下水の PCE 濃度の高い井戸付近で検知管法による表層土壌調査が実施され、事業所内の土壌ガスの PCE 濃度が最大値 200ppm (No. 4)と著しく汚染されており、周辺地域でも汚染が拡散していることがわかった(図2-A、B)

4. 地下水流動調査

当該事業所周辺地域は砂丘地に相当する。この地域の浅

層地下水は、均質な砂層を帯水層としていると考えられ、 その流動状況を地形から推定することができる。等高線の 状況及び浅層地下水を取水している深度数 m~ 十数 m の一般 家庭用の井戸の水位から、事業所付近の地下水は、北西か ら南東に流動していると考えられる(図3)。

5.事業所内ボーリング調査及び浄化装置の設置

浄化対策として、事業所の負担により事業所内ボーリン グ調査及び浄化装置の設置を行うことになった(図4)。

5-1 ボーリング調査

事業所の東側に水位 2.66m、深度 3.50m の調査孔 A を掘削した。内径 50mm のストレーナ加工した塩ビ管を孔内に挿入し、さらにその内側に内径 10mm の塩ビ管を地下水面以下まで入れ、地下水揚水用とした。地表部分はキャップをして内径 10mm の塩ビ管を付けて土壌ガス吸引用とした。土壌ガスの PCE 濃度は 220ppm であり、地下水の PCE 濃度は 1.0mg / I であった。

また、西側に水位 2.77m、深度 3.44m の調査孔 B を掘削した。東側の調査孔と同様に調査孔を仕上げた。土壌ガスの PCE 濃度は 25ppm であり、地下水の PCE 濃度は 0.15mg/I であった。

さらに、北側に深さ 1 m の調査孔 C を設けた。表面のコンクリートをハンマードリルではがし、鉄管をハンマーで打ち込む。内径 50mm のストレーナ加工した塩ビ管を孔内に挿入し、地表部分はキャップをして内径 10mm の塩ビ管を付けて土壌ガス吸引用とした。土壌ガスの PCE 濃度は 80ppm であった。

5-2 浄化装置の設置

秦野市(1996)等で実施されている浄化装置を参考として、ドラム缶を利用して、曝気槽、吸着槽等からなる浄化装置を設置した(図4)。曝気槽は、ステンレス格子で内部を3段に仕切り、上段と下段に排水弁を付け、中段に気

*神奈川県温泉地学研究所 〒250-0031 神奈川県小田原市入生田 586 報告,神奈川県温泉地学研究所報告,第 31 巻,第 2 号,107 - 116, 2000.

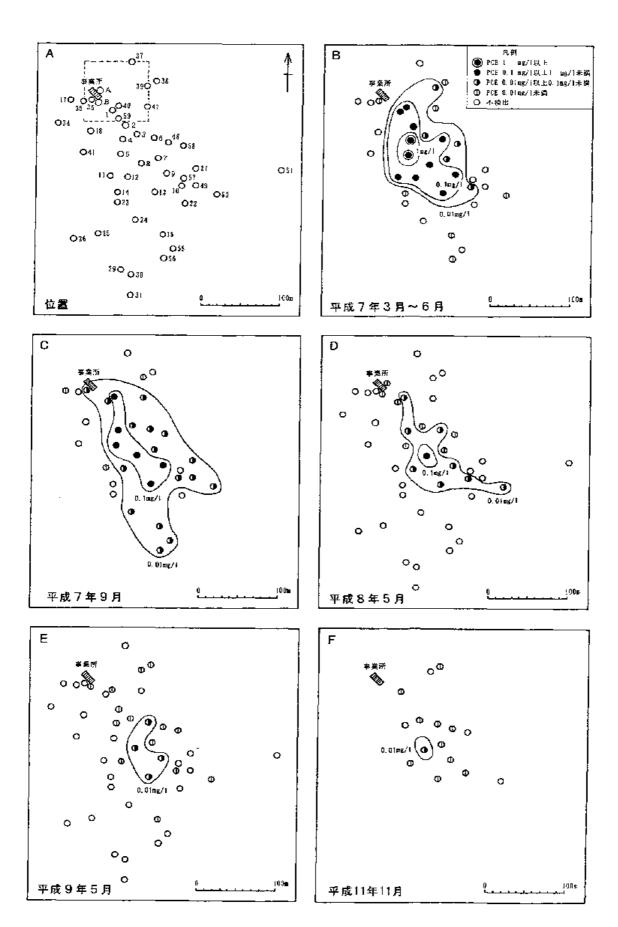


図1 周辺井戸水質調査・周辺モニタリング調査の位置及び結果 (図1-Aの点線は、図2の範囲を示す。)

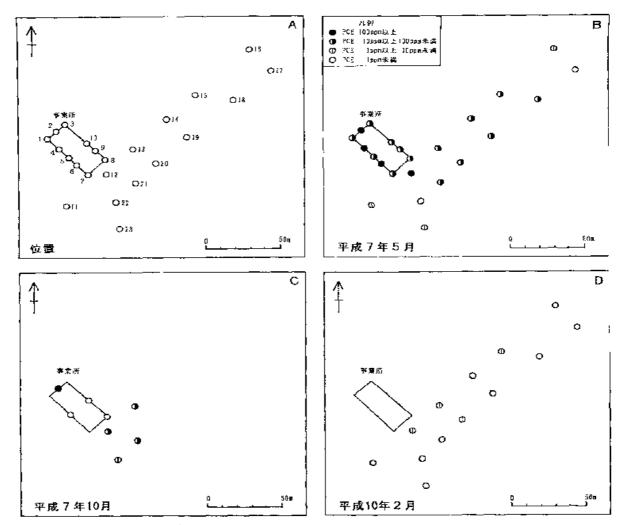


図2 表層土壌調査の位置及び結果 (図の範囲は、図1-Aの点線で示す。)

液接触を促進させるためにグラスウール状のものを充填した。 吸着槽は、曝気槽と同様に内部を加工し、中段に粒状活性炭 を充填した。

調査孔のキャップにつけた管からプロアにより汚染土壌ガスを吸引し、また、調査孔の地下水面まで挿入した管から揚水ポンプにより汚染地下水を揚水して、曝気、活性炭吸着で処理した。その後、調査孔に接続しているプロアは湿気を除くため気液分離器を付け、騒音対策のためプロアや揚水ポンプにフードを付けるように改良した。揚水した地下水、吸引した土壌ガスは、曝気、活性炭吸着処理後、PCE濃度が0.01mg/1未満で排水、1 ppm 未満で排気している。

5-3 浄化装置の運転後の状況

平成7年7月に浄化装置の運転を開始した。そのとき、 事業所内の東側の調査孔Aでは、土壌ガスの PCE 濃度は 220ppm であり、地下水の PCE 濃度は1.0mg / 1 であった。 また、西側の調査孔 B では、土壌ガスの PCE 濃度は 25ppm であり、地下水の PCE 濃度は 0.15mg / 1 であった。

運転開始から 4 月後の平成 7 年 11 月、調査孔 A では、土壌ガスの PCE 濃度は 7 ppm、地下水の PCE 濃度は 0.16mg/1 となり、調査孔 B では、土壌ガスの PCE 濃度は 0.2ppm、地下水の PCE 濃度は 0.019mg/1 と減少していた。

周辺モニタリング調査の項で述べているように、事業所内では浄化が速やかにはかどり、汚染状況は大幅に改善された。

浄化装置の運転を続けて、平成7年7月から平成9年10月までの約2年3月間に、曝気、活性炭吸着処理により約1.3kgのPCEが除去されたと考えられる。

揚水した地下水、吸引した土壌ガスの PCE 濃度が急激に減少し、揚水量が少ないので、PCE の除去量は多くないが、浄化効果は認められた。

今回は、応急的にボーリング調査及び浄化装置の設置を

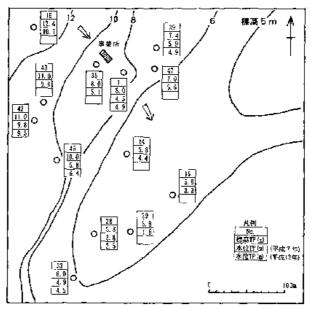


図3 地下水流動調査の位置及び結果 (矢印は、地下水の流向を示す。)

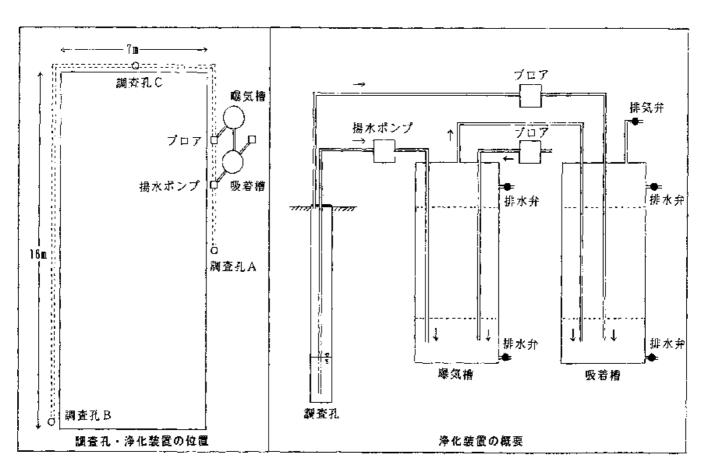


図4 調査孔・浄化装置の位置及び概要

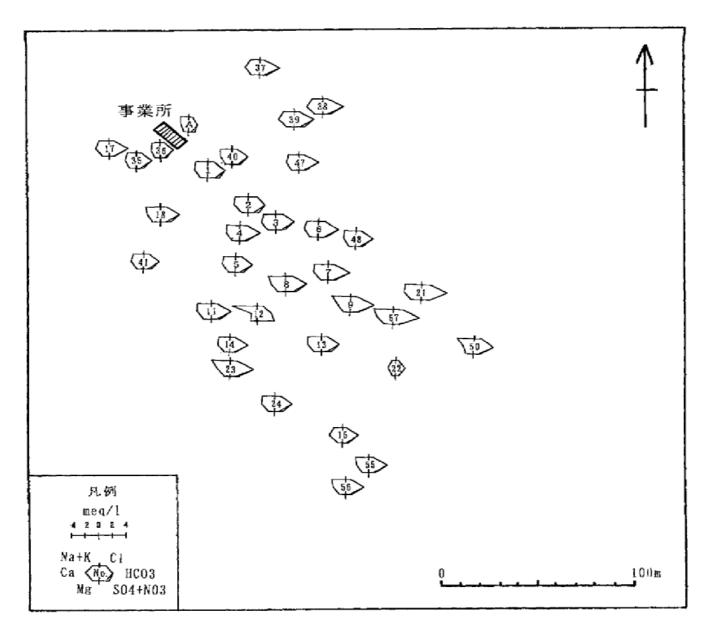


図5 地下水主要成分の分析結果(水質ヘキサダイヤグラム)

行ったが、改良点を以下に挙げる。 調査孔は深度が約5m と浅いので、内径50mmでは揚水能力が低く、枯渇しやすい。できれば、内径100~200mm と大きくしたほうがよい。 ブロアや揚水ポンプは、消音型で処理能力の大きいものを使用したい。 曝気槽の下段からガスを送気するとき、発泡させるようにするとよい。 粒状活性炭の取扱いについて、交換しやすいように工夫するとよい。

6. 周辺モニタリング調査

事業所周辺の地下水汚染状況を把握し、また、事業所内 に設置した浄化装置の効果を確認するため、周辺モニタリ ング調査を行っている。

地下水汚染が判明した当初の平成 7 年 3 月頃から約半年経過した平成 7 年 9 月の測定では、PCE 濃度の最大値は 0.61 mg / 1 (No. 8、以下、同地点)であり、1 mg / 1 以上の地点はなくなり、0.1 mg / 1 以上 1 mg / 1 未満が 16 地点と拡大していた(図 1 - C)。

平成 8 年 5 月には、PCE 濃度の最大値は 0.16mg/1であり、0.1mg/1以上 1mg/1未満が 1地点、0.01mg/1以上 0.1mg/1未満が 8地点と減少している。特に、事業所内の調査孔 A、B で 0.01mg/1未満と減少しているのがき

わだっている(図1-D)。

当初から約2年経過した平成9年5月には、PCE 濃度の最大値は 0.078mg / 1であり、0.1mg / 1以上がなくなり、0.01mg / 1以上 0.1mg / 1未満が4地点であった(図1-E)

平成 10 年 11 月には、PCE 濃度の最大値は 0.024mg / 1 であり、0.01mg / 1 以上 0.1 mg / 1 未満が 1 地点となった。

当初の平成7年3月頃から約4年半経過した平成11年11月の状況は、PCE 濃度の最大値は0.017mg/1で、0.01mg/1以上0.1mg/1未満はこの1地点のみであり、0.01mg/1未満になるのはもうすぐと思われる(図1-F)。

なお、平成 10 年 2 月に実施された表層土壌調査の結果では、土壌ガスの PCE 濃度が最大値 3.5ppm と激減していることがわかった(図 2-D)。

7. 地下水の主要成分の分析

地下水の主要成分は、接触してきた地層の違いを反映しており、一般に、地層と長く接触した深層の地下水はカルシウムイオンや炭酸水素イオンが増加し、硝酸イオンが減少する。また、生活排水等の影響を受けるとナトリウムイオンや塩素イオンが多くなる(粟屋ら、1999)。

今回、周辺モニタリング調査にあわせて、地下水の流動 状況や汚染状況を検討するため、周辺井戸の地下水主要成 分を分析し、水質ヘキサダイヤグラムを作成した(図5)。

調査範囲が約 200m 四方と狭いので、地下水の水系区分には至らなかった。なお、地下水の汚染浄化がはかどらない地点(No.8、No.9など)では、ナトリウムイオンが卓越している傾向が認められるが、その理由は不明である。

8.まとめ

神奈川県内の臨海部において井戸の水質調査を行ったところ、PCE が検出された。地下水の流動状況、付近の表層土壌調査、地下水の主要成分分析等の結果を検討し、PCE 使用工場が他にない等の理由から、PCE を使用していた小規模事業所が原因の地下水汚染と特定された。

汚染浄化対策として、事業所内で調査孔を掘削し、これらの調査孔を用いて汚染土壌ガスの吸引及び汚染地下水の 揚水を行い、ドラム缶を利用した安価な浄化装置を設置し、 曝気及び活性炭処理を施した。

事業所周辺の地下水汚染状況を把握し、また、事業所内 に設置した浄化装置の効果を確認するため、周辺モニタリ ング調査を行っている。

その結果、地下水汚染状況は、浄化対策を行う前には PCE の最大値が 1.4 mg / 1であったが、 4年半後には PCE の最大値が 0.017 mg / 1までに減少し、汚染状況は大幅に改善された。

謝辞

本調査を実施するにあたって、神奈川県大気水質課、関係地区行政センター、関係自治体に御協力いただいた。

また、周辺モニタリング調査等で、周辺井戸の所有者に御協力いただいた。

以上の方々に感謝いたします。

参考文献

粟屋 徹、板寺一洋、横山尚秀、長瀬和雄(1999)地下水 の複数汚染源の調査手法、神奈川県温泉地学研究所報告 第30巻、第1・2号、9-18.

秦野市環境部環境保全課(1996)名水「秦野盆地湧水群」 の復活に向けて、1-178.

Appendix I 周辺井戸水質調査・周辺モニタリング調査結果 (1)

採水日	950307-612 *			950711			9509	18-19		951107-8			960213-14		
		がみ加法		検知管法	がみ加法		検知管法	がみ加法		検知管法	がスクロ法		検知管法	がスクロ法	
井戸	採水日	PCE	温度	PCE	PCE	温度	PCE	PCE	温度	PCE	PCE	温度	PCE	PCE	
番号		mg/I		ppm	mg/I		ppm	mg/I		ppm	mg/I		ppm	mg/I	
1	950424	0.170				17.3	5.0	0.082	17.7	4.0	0.086	15.4	ND	0.011	
2	950320	0.560		20.0	0.420				18.0	2.5	0.048				
3	950320	0.063				19.1	1.2	0.067	17.9	2.0	0.039	14.2	1.0	ND	
4	950320	1.100	17.4	40.0	1.100	20.9	10.0	0.240	19.1	7.7	0.240	13.5	4.0	0.073	
5	950320	1.400	16.4	2.0	0.021	17.0	17.0	0.250	17.1	2.3	0.051	14.3	2.0	0.018	
6	950320	0.120				18.8	2.0	0.074	18.7	1.8	0.037	13.9	1.2	0.011	
7	950424	0.029				19.1	2.5	0.057	18.5	2.0	0.024	14.2	1.5	0.011	
8	950424	0.750		30.0	0.690	16.4	20.0	0.610	18.6	30.0	0.760	17.4	17.5	0.240	
9	950307	0.140				17.6	5.0	0.160	17.0	7.6	0.240	17.1	4.5	0.078	
10	950424	0.020				19.6	6.0	0.090	19.7	4.2	0.110	17.2	5.0	0.076	
11	950320	0.100				19.0	ND	0.002	19.3	ND	ND	15.2	ND	ND	
12	950320	0.180				16.8	2.0	0.060	17.3	3.0	0.075	16.2	3.8	0.028	
13	950424	0.340	19.6	11.0	0.220	19.2	5.0	0.160	19.8	7.5	0.220	17.5	5.2	0.088	
14	950424	0.001				20.3	ND	ND	17.7	ND	ND	14.0	ND	ND	
15	950424	0.005				18.1	0.6	0.032	19.6	ND	ND	16.6	ND	ND	
17	950424	ND				20.5	ND	0.009	17.1	ND	ND	13.7	ND	ND	
18	950424	ND				18.4	ND	ND	17.9	ND	ND	18.0	ND	ND	
21	950523	ND				17.7	ND	0.015	17.9	ND	ND	14.5	ND	ND	
22	950320	ND				24.9	ND	ND	19.5	ND	ND	10.5	ND	ND	
23	950320	ND				16.1	ND	ND	17.2	ND	ND	14.7	ND	ND	
24	950320	ND				20.5	ND	0.011	19.6	ND	ND	20.7	ND	ND	
25									16.5	ND	ND	14.7	ND	ND	
26									18.4	ND	ND	13.9	ND	ND	
29									16.7	ND	ND	16.8	ND	ND	
30									18.5	ND	ND	16.5	ND	ND	
31									19.0	ND	ND	17.0	ND	ND	
34									17.7	ND	ND	16.1	ND	ND	
35	950523	ND				19.5	ND	ND				15.9	ND	ND	
36	950523	0.007				19.1	0.3	0.012	18.0	ND	ND	15.8	ND	ND	
37	950523	ND				19.9	ND	ND	18.5	ND	ND	14.2	ND	ND	
38	950523	0.002				19.5	ND	ND	19.6	ND	ND	15.2	ND	ND	
39	950523	0.010				20.8	ND	0.005	20.6	ND	ND	17.0	ND	ND	
40	950523	0.560	19.4	25.0	0.470	18.7	5.0	0.130	18.7	8.0	0.220	16.9	2.5	0.030	
41	950424	ND				17.7	ND	ND	19.4	ND	ND	17.0	ND	ND	
47	950523	0.004				18.5	ND	0.014	17.9	ND	ND	13.2	ND	ND	
48	950523	0.034				17.4	2.0	0.070	16.3	1.8	0.030	11.6	1.0	ND	
49	950523	ND				20.6	ND	0.015	17.4	ND	ND	15.9	ND	ND	
50	950523	0.003				20.5	0.6	0.017	17.9	1.0	0.011	17.4	1.6	0.011	
51									18.1	ND	ND	16.5	ND	ND	
55	950612	ND				18.4	ND	0.018	19.2	ND	ND	17.2	ND	ND	
56	950612	0.002	16.6	ND	ND	18.7	1.4	0.023	18.5	ND	ND	17.1	ND	ND	
57	950612	ND				18.8	ND	ND	19.0	ND	ND	16.1	ND	ND	
58									17.6	ND	ND				
Α			23.2	35.0	1.000				18.8	5.2	0.160	17.1	2.0	0.010	
В			25.0	8.0	0.150				19.7	3.0	0.019	18.2	1.0	ND	

採水日		960516-17			960821			961121-22			970220			970515-16	
		検知管法	がスクロ法		検知管法	がスクロ法		検知管法	がスクロ法		検知管法	がスクロ法		検知管法	がスクロ法
井戸	温度	PCE	PCE	温度	PCE	PCE	温度	PCE	PCE	温度	PCE	PCE	温度	PCE	PCE
番号		ppm	mg/I		ppm	mg/I		ppm	mg/I		ppm	mg/I		ppm	mg/I
1	15.1	0.8	0.005	18.0	0.5	0.003	17.9	0.7	0.002	14.8	0.1	0.001	16.7	ND	ND
2				21.0	2.0	0.012	16.4	0.3	0.001	11.0	0.3	0.003	17.0	0.8	0.002
3	15.0	1.1	0.008	18.5	2.5	0.015	15.7	1.0	0.005	13.0	0.3	0.006	17.5	0.7	0.006
4	15.4	3.2	0.045	20.0	2.0	0.010	17.1	1.2	0.005	13.2	0.3	0.005	16.0	0.3	0.005
5	14.7	1.1	0.009	17.0	0.2	0.001	16.5	ND	ND	16.5	0.1	ND	17.4	ND	ND
6	13.3	1.2	0.011	18.0	1.8	0.010	16.9	1.2	0.005	13.3	0.7	0.007	15.8	1.0	0.012
7	14.2	1.2	0.007	17.5	1.8	0.009	17.2	1.3	0.006	13.5	0.6	0.008	19.0	0.8	0.006
8	15.4	9.0	0.160	18.0	12.0	0.200	18.8	7.2	0.190	16.6	4.0	0.110	15.5	5.0	0.078
9	14.8	5.5	0.048	17.0	5.0	0.036	16.9	2.7	0.035	16.2	1.6	0.020	17.0	2.0	0.021
10	16.1	3.0	0.036	18.5	2.6	0.014	17.8	0.6	0.003	15.9	0.6	0.003	17.5	1.0	0.006

^{*}関係自治体測定

Appendix I(continued) 周辺井戸水質調査・周辺モニタリング調査結果(2)

採水日		960516-17			960821			961121-22			970220			970515-16	
		検知管法	がスクロ法		検知管法	ガスクロ法		検知管法	がスクロ法		検知管法	ガスクロ法		検知管法	がスクロ法
井戸	温度	PCE	PCE	温度	PCE	PCE	温度	PCE	PCE	温度	PCE	PCE	温度	PCE	PCE
番号		ppm	mg/I		ppm	mg/I		ppm	mg/I		ppm	mg/I		ppm	mg/I
11	14.6	ND	ND				18.1	ND	ND				16.5	ND	ND
12	15.6	2.0	0.013	17.0	1.6	0.008	16.9	1.1	0.005	15.4	1.1	0.010	18.0	1.2	0.009
13	15.5	4.3	0.038	21.0	4.0	0.027	18.8	2.3	0.024	17.3	2.0	0.019	17.9	1.8	0.013
14	15.3	ND	ND				16.9	ND	ND						
15	15.7	ND	ND				18.0	0.1	0.001				16.4	ND	0.001
17	13.0	ND	ND				14.5	ND	ND				16.0	ND	ND
18	16.6	ND	ND				17.4	ND	ND				18.0	0.8	ND
21	15.1	ND	ND	17.5	ND	ND	17.5	ND	ND	15.3	ND	ND	18.2	ND	ND
22	15.1	ND	ND	25.0	ND	ND	16.7	ND	ND	10.7	ND	ND	17.8	ND	ND
23	14.6	ND	ND				15.7	ND	ND				15.5	ND	ND
24	14.3	ND	ND				15.2	ND	ND				15.0	ND	ND
25	14.1	ND	ND				16.1	ND	ND				14.1	ND	ND
26	15.4	ND	ND				16.6	ND	ND				16.5	0.1	ND
29	14.9	ND	ND				16.3	ND	ND				16.0	ND	ND
30	13.9	ND	ND				17.9	ND	ND				15.5	ND	ND
31	14.6	ND	ND				18.4	ND	ND				16.5	ND	ND
34	15.0	ND	ND				13.3	ND	ND				18.8	ND	ND
35	13.4	ND	ND				17.7	ND	ND				21.2	ND	ND
36	13.9	ND	ND				18.0	ND	ND				16.4	ND	ND
37	13.3	ND	ND				17.7	ND	ND				16.5	ND	ND
38	15.4	ND	ND				15.2	ND	ND				16.5	ND	0.002
39	15.2	ND	ND				18.2	0.1	0.001				16.2	1.0	0.001
40	15.9	2.0	0.025	18.0	1.6	0.007	16.9	1.2	0.005	14.5	0.8	0.009	18.0	1.0	0.007
41	15.9	ND	ND				18.9	ND	0.001				18.0	ND	ND
47	14.3	ND	ND				16.5	ND	ND				16.0	ND	ND
48	13.7	1.1	0.009	17.5	1.7	0.008	14.8	0.7	0.004	10.8	0.3	0.006	18.6	0.8	0.005
49	15.6	ND	ND	20.0	ND	ND	16.1	ND	ND	14.7	ND	ND			
50	13.9	1.7	0.010	18.5	1.3	0.006	16.0	0.6	0.003	14.7	0.1	0.004	20.0	0.8	0.003
51	15.3	ND	ND				17.5	ND	ND				16.5	ND	ND
55	15.0	ND	ND				18.5	ND	ND				17.4	ND	ND
56	14.8	ND	ND				17.7	ND	ND				16.5	1.0	ND
57	15.7	ND	ND	19.0	ND	ND	17.8	ND	ND	14.6	ND	ND	17.0	ND	ND
58				17.0	ND	ND	16.0	ND	ND	15.2	ND	ND	16.9	ND	0.001
59							19.5	ND	ND						
Α	17.0	1.0	0.007	22.0	1.2	0.006	18.5	1.0	0.003	14.5	0.5	0.005			
В	17.5	0.7	0.004	22.0	0.9	0.003	18.2	0.3	0.002	16.2	0.2	0.002	21.0	0.5	0.002

採水日		971113			980609			981112			990519			991117	
		検知管法	がスクロ法												
井戸	温度	PCE	PCE												
番号		ppm	mg/I												
2	19.2	1.2	0.003	18.4	0.5	ND									
3	19.0	1.2	0.006	17.0	2.0	0.005	18.0	1.2	0.002	16.9	1.0	0.003	17.2	0.2	0.004
4	19.0	1.0	0.006	17.0	1.0	0.004	19.6	0.5	0.003	17.0	0.5	ND	17.5	ND	ND
6	18.8	1.3	0.006	16.0	2.5	0.006	17.7	0.5	0.004	16.4	0.5	0.004	18.6	0.2	0.005
7	18.5	1.0	0.008	17.1	2.0	0.005				16.5	0.8	0.008	19.0	1.0	0.004
8	19.0	4.8	0.077	16.9	2.5	0.021	19.0	4.0	0.024	16.3	3.5	0.018	19.5	3.0	0.017
9	18.0	2.0	0.025	16.5	2.0	0.010	18.1	1.0	0.009	16.0	1.0	0.008	18.0	1.0	0.005
10	19.2	2.5	0.025	19.2	1.5	0.005	19.5	1.2	0.009	18.0	1.5	0.008	20.0	1.2	0.007
12	18.0	1.2	0.007	17.2	0.8	0.002	17.8	0.2	0.002	16.7	ND	ND	18.4	1.5	0.002
13	19.5	1.0	0.002	17.3	1.0	0.003	20.2	0.3	0.005	17.0	0.5	ND	20.3	0.8	0.003
38	19.2	1.5	0.002	17.8	2.0	0.002	18.6	ND	0.001	17.0	ND	0.003	19.5	ND	0.002
39	19.1	0.5	0.001	16.9	0.8	0.001	19.8	ND	ND	16.1	ND	ND	19.6	ND	ND
40	18.2	1.5	0.005	17.3	1.5	0.004	18.2	2.0	0.006	17.5	0.8	0.004	18.0	0.5	0.004
48	16.2	1.5	0.009	18.3	1.3	0.004	15.3	0.5	0.003	16.0	0.8	0.004	12.7	1.5	0.005
49															
50	15.8	1.5	0.002	19.9	1.0	0.002	17.5	0.3	0.002	17.0	0.5	ND	18.0	ND	ND
58	16.8	1.5	ND	17.0	3.0	ND	16.2	ND	ND	16.8	ND	ND	17.0	0.5	ND
В	19.0	0.5	ND	18.7	1.2	0.005									

Appendix表層土壌調査結果土壌ガスの PCE 濃度 (ppm)

	測定年	F月日		
No.	950511	951012	960311	980224
1	90			
2	120	100.0		
3	10			
4	200			
5	30	0.5		
6	110			
7	35			
8	10	0.0		
9	25			
10	20	0.0		
11	1		ND	0.3
12	100	18.0	3.1	2.0
13	40	12.0	8.0	3.5
14	20		1.9	0.5
15	15		3.0	1.8
16	6		1.0	0.8
17	1		ND	0.5
18	10		8.0	0.5
19	15		3.8	0.8
20	20		3.0	2.0
21	20	15.0	3.0	0.8
22	3	1.4	0.2	0.3
23	1		ND	0.1

^{*}関係自治体、関係地区行政センター測定

Appendix 地下水流動調査結果

							(m)
測定	年月日		950711頃*		000	228	
No.	標高TP	水位GL	深度GL	水位TP	水位GL	深度GL	水位TP
1	8.0	3.50	6.20	4.5	3.13	5.46	4.9
14	5.8	1.45	12.94	4.4			
15	5.8	2.50	5.95	3.3			
16	12.4	1.70	4.84	10.7			
28	5.8	2.05	5.90	3.8	2.30	5.04	3.5
29	5.8	4.20	14.04	1.6			
32	6.0	1.06	4.01	4.9	1.47	4.11	4.5
35	8.0	2.90	5.05	5.1			
39	7.4	1.51	2.87	5.9	2.54	2.72	4.9
42	11.0	1.18	4.44	9.8	1.54	4.34	9.5
43	11.0	1.18	3.36	9.8			
45	10.0	4.22	7.52	5.8	3.58	6.80	6.4
47	7.0	1.44	3.50	5.6			

^{*}関係自治体測定

Appendix 地下水主要成分の分析結果

					711111117									
No.	採水日	温度	рΗ	導電率	Na	K	Mg	Ca	CI	N03	S04	HC03	H2Si03	総量
				μS/cm	mg/l	mg/l	mg/ 1	mg/l	mg/l	mg/ 1	mg/l	mg/l	mg/l	mg/l
1	950918	17.3	7.2	470	30.7	9.3	11.7	33.7	27.9	32.2	48.8	135.0	77.6	407
2	950711		6.9	471	35.4	5.8	9.6	36.0	40.8	39.6	36.8	134.0	71.4	409
3	950918	19.1	7.0	465	30.8	7.7	12.4	36.9	31.5	28.8	34.8	146.0	75.4	404
4	950918	20.9	6.8	430	33.9	8.8	11.4	35.7	33.8	17.0	28.9	160.0	64.2	394
5	950918	17.0	7.2	427	29.1	10.2	10.4	34.1	28.1	26.5	32.4	135.0	67.0	373
6	950918	18.8	7.1	465	29.7	9.2	12.8	37.2	30.9	16.9	34.8	158.0	68.8	398
7	950918	19.1		486	34.0	13.1	11.7	37.7	29.4	19.6	31.1	173.0	68.6	418
8	950918	16.4		522	42.1	13.7	12.1	37.7	33.5	30.0	43.9	168.0	68.4	449
9	950918	17.6	7.1	480	48.5	12.0	10.9	33.7	31.4	15.0	38.9	188.0	59.0	437
11	950918	19.0		438	32.4	13.0	11.8	35.5	28.7	26.3	38.0	158.0	59.8	404
12	950918	16.8	7.6	599	74.2	15.8	11.5	17.6	31.7	5.6	119.0	126.0	64.0	465
13	950918	19.2	7.1	531	36.7	16.1	13.2	39.8	30.5	38.6	39.2	162.0	71.0	447
14	950919	20.3	7.3	442	29.3	11.2	9.4	34.3	25.2	16.3	30.6	165.0	39.8	361
15	950919	18.1		390	23.1	10.4	7.9	38.0	19.0	20.5	27.2	143.0	65.4	354
17	950919	20.5		440	28.9	6.2	12.2	38.6	23.5	10.1	34.8	169.0	48.6	372
18	950919	18.4	7.3	539	40.0	16.1	14.0	37.7	30.7	44.9	36.3	169.0	70.6	459
21	950919	17.7	7.1	626	46.5	16.1	18.2	51.1	47.9	2.4	60.4	232.0	39.6	514
22	950918	24.9	7.2	242	11.0	3.3	5.8	21.8	14.3	7.0	21.3	83.0	60.6	228
23	950919	16.1	7.1	532	55.4	13.2	10.0	37.8	33.3	29.2	41.4	211.0	66.4	498
24	950919	20.5		475	32.9	14.3	10.3	38.0	29.5	34.9	28.8	158.0	74.2	421
35	950919	19.5	7.2	416	27.1	5.6	11.8	34.2	25.6	27.6	29.5	137.0	64.2	363
36	950919	19.1	7.4	361	24.8	5.1	9.3	26.7	23.0	21.0	26.7	115.0	75.2	327
37	951006	19.9		468	27.9	4.5	14.5	42.9	23.5	24.2	32.2	179.0	71.0	420
38	950918	19.5		497	30.9	5.9	14.1	46.8	24.5	24.9	37.5	191.0	64.4	440
39	950918	20.8		515	31.7	8.3	13.9	45.6	25.3	39.1	42.4	180.0	73.6	460
40	950918	18.7		452	32.0	11.1	11.9	32.3	26.2	24.8	42.1	143.0	70.0	393
41	950919	17.7		441	29.5	9.7	11.3	36.3	30.2	30.8	27.0	142.0	65.6	382
47	950919	18.5		465	30.2	10.0	13.9	36.9	25.8	19.0	32.3	177.0	70.2	415
48	950918	17.4	7.1	449	31.9	10.7	11.7	35.4	29.1	22.0	32.7	153.0	67.4	394
50	950918	20.5		528	49.5	15.1	13.4	31.4	39.3	17.4	34.3	173.0	65.8	439
55	950919	18.4		463	35.0	16.6	11.2	35.8	25.3	20.5	31.4	166.0	62.8	405
56	950918	18.7		449	36.0	17.5	10.7	37.2	27.6	22.2	29.0	164.0	56.0	400
57	950918	18.8		655	53.5	23.3	16.1	47.6	50.5	12.8	36.3	235.0	65.6	541
Α	950918	21.4		320	23.8	6.3	7.5	22.3	19.5	31.6	24.0	78.2	71.6	285
В	950918	21.5	7.8	316	23.3	6.1	7.4	22.0	21.2	34.7	24.7	75.8	70.0	285
						(オン , K : カリウノ								
					NO3:硝酸1	「オン , SO4 : 研	流酸イオン,H	CO3:炭酸7	K素イオン , H	2Si03:好珪	酸			

写真 1 事業所内ボーリング調査 (調査孔の掘削)

写真 2 事業所内ボーリング調査 (調査孔の仕上げ)

写真3 浄化装置の位置 (浄化効果の調査)

写真 4 周辺モニタリング調査 (地下水の採取)