箱根大涌谷北側斜面における火山ガス・地温の連続観測

原田昌武^{*1}·棚田俊收^{*2}·伊東 博^{*1}

The continuous observation of volcanic gases and ground surface temperature at the northern part of Owakudani, Hakone volcano

by

Masatake HARADA^{*}, Toshikazu TANADA^{*} and Hiroshi ITO^{*}

1. はじめに

箱根火山の大涌谷は古来より噴気地帯である(萬年, 2009)。その主な噴気域は大涌沢であるが、2001年箱根 群発地震活動以降、大涌沢の尾根や大涌谷の北側斜面(大 涌沢の北西側)でも噴気が確認されるようになった(辻 内ほか,2003)。現在では、上湯場付近で県道734号線 まで出現してきている(図1)。

火山地帯で発生するガスは硫化水素や二酸化硫黄な ど人体に影響を及ぼすものがあり、時として危険である。 また、地温の上昇は樹木を枯死させ、倒木を引き起こす (棚田,2008)のみならず、土砂災害の発生を引き起こ す可能性がある。

これまで温泉地学研究所では定期的に現地で火山ガ スや地温の測定を行ってきた(棚田ほか,2008)。しか しながら人力による継続した測定は困難である。そこで、 2008(平成20)年度から開始した温泉地学研究所の地震・ 火山観測網の強化・再整備事業(伊東,2009)において、 火山ガス・地温の連続観測を行うこととなった。

本報告では、新たに設置された火山ガス・地温観測 システムの概要を紹介するとともに、得られている観測 結果を報告する。

2. 火山ガス・地温観測システムの概要

2001 年箱根群発地震活動以降、大涌谷北側斜面にお いて噴気が確認されている地点、及び、樹木の立ち枯れ や倒木が激しく地温が高いと考えられる地点の計3ヶ所 (標高の高い方からA,B,Cポイントと呼ぶ)において 火山ガス・地温観測装置を設置した。図1に設置位置を 示す。Bポイント、及び、Cポイントについては、棚田 ほか(2008)による調査地点2、3にそれぞれ対応する 場所である。

図1 観測点設置位置と周辺の地形。各観測点からの矢 印は熱赤外放射温度計の観測方位を示す。地形図は国 土地理院による。

各観測点では、火山ガス観測として硫化水素(H₂S)・ 二酸化硫黄(SO₂)の検知器を設置するとともに、赤外 放射温度計(設置型赤外線サーモグラフィ装置)を用い た地温観測を行っている。これらの観測システムの構成 の系統図を図2に、また、外観を写真1、2に示す。火 山ガス検知装置は地表から約2m程度の高さに設置され ており、さらにその上の地表から約2.5m程度の場所に 赤外放射温度計が取り付けられている。

各観測点では 30 秒サンプリング(ないしは 60 秒サ ンプリング)で H₂S、SO₂ の濃度と赤外放射温度計によ る地表面温度を測定し、地表面温度については熱赤外画 像処理を行っている。これらのデータは、まず B ポイ ントから光ケーブルによる有線 LAN で A ポイントに転 送される。次に A ポイントと B ポイントからのデータ

- *1 神奈川県温泉地学研究所 〒250-0031 神奈川県小田原市入生田 586
- *2 独立行政法人防災科学技術研究所 〒305-0006 茨城県つくば市天王台3-1

報告,神奈川県温泉地学研究所報告,第 42 巻 ,57-61, 2010

図2 火山ガス・地温観測システムの構成系統図。

写真1 火山ガス・地温観測装置の外観(正面)。

を無線 LAN により C ポイントに送信し、最終的には、 C ポイントから A・B ポイントのデータも含めて NTT のネットワーク回線(IP-VPN)によってリアルタイム で温泉地学研究所に転送される。

温泉地学研究所に転送されたデータは、データ処理

写真 2 火山ガス・地温観測装置の外観(裏)および、 A ポイントの地表面。

コンピュータで受信される。これには Windows 上で動 作する NEC Avio 赤外線テクノロジー(株) 社製のデー タ収録ソフト"ユニファイザ"がインストールされてお り、同ソフトによって火山ガス濃度の監視、熱赤外画像 の調整・監視を行っている(図3)。熱赤外画像につい ては画像内に地表ではなく空中が入っていると極端に低 い温度を測定してしまうことになる。そのため、熱赤外 画像内には特に監視する長方形の領域を設定し、その領 域内での最高温度、最低温度、平均温度を記録している。

また、データ処理コンピュータでは、火山ガス・地 温の異常判定を行っており、写真3の警報表示ボックス に表示されるとともに、指定した連絡先に電話で通報す

図3 ユニファイザによる火山ガス・地温の監視モニタ(上段から順にA, B, C ポイント)。左列は地温(熱赤外画像)。 中列は二酸化硫黄(SO₂)・硫化水素(H₂S)濃度(ppm)のグラフと現在の値。右列は熱赤外画像の特定の長方形内(左 列の画像中の白い長方形)における最高温度、最低温度、平均温度()のグラフと現在の値をそれぞれ示す。

写真3 警報表示ボックスのモニター画面。

るように設定できる。異常判定の基準は、A, B, C ポイ ントそれぞれの最高温度、最低温度、平均温度、H₂S の 濃度、SO₂ の濃度に対して設定が可能である。

一般的に噴気地帯では観測機器やセンサーなどの劣

化が激しく、必要最低限の機器構成にするために、現地 の観測点にはデータ収録装置(ロガー)を付属していな い。そのため、ネットワーク回線や無線 LAN 等に不具 合が生じ、データが温泉地学研究所内のデータ処理コン ピュータに届かない場合は、欠測となってしまう。

3. 火山ガス観測

火山ガスについては硫化水素(H₂S)および二酸化硫 黄(SO₂)の濃度を連続観測している。これらのガス検 知器には(株)ジコー社製 VGU-01を使用している。こ の機器の仕様を表1に示す。火山ガスの検出原理は電気 化学式で、出力は4~20mA であるが、これに A/D 変 換を行いH₂S、SO₂ともに0~100ppmの濃度を測定し ている。

設置当初の約1ヶ月間の観測データを図4に示す。B ポイントとCポイントにおいて~4ppmのH₂S濃度が 観測されているが、これは、ガス検知器の温度変化ない

図4 各観測点におけるH₂S、SO₂の濃度変化(2009/01/29~2009/02/26)。

図 5 赤外放射温度計による各観測点の(上)最高温度、(中)平均温度、(下)最低温度(2009/01/29~ 2009/02/26)。

しは A/D 変換の若干の不安定性のためだと考えられる。 ガス検知器にはできるだけ温度を一定に保つようにヒー ターが設置されているが、特に B ポイントの H₂S 濃度 が 4ppm となっているのは、機器の再起動によるガス検 知器の一時的な温度低下によって引き起こされたこと が確認されている。また、A ポイントの SO₂ において 1ppm が数回測定されているが、これについては、大涌 沢の自然噴気が風によって流れてきた可能性も考えられる。

いずれにせよ、各観測点の H₂S、SO₂ ともほぼ 0ppm であり、有意な火山ガス濃度は検出されていない。棚田 ほか(2008)の調査によれば、B ポイント(棚田ほか(2008) による調査点 2)の噴気ガスを直接採取し測定した結果、 H₂S 濃度は 16ppm であり、地表から数十 cm の高さにお

表1 火山ガス検知器の主な仕様。

ガス検知器
(株)ジコー
VGU-01
硫化水素(H2S)および二酸化硫黄(SO2)
電気化学式
0~100ppm
繰り返し精度1%
4~20mA

いては 3ppm であると報告されている。今回新たに導入 した火山ガス観測施設は、前述の通り約 2m の高さにガ ス検知器を設置しているため、また、熱赤外画像を同時 に取得するために噴気場所から 10m 程度離れているた め、火山ガスは大気中に拡散し、ほぼ 0ppm となったの であろう。

4. 地温観測

地温の測定には赤外放射温度計(設置型赤外線サー モグラフィ装置)を設置し、地表面の温度を面的に観測 している。この赤外放射温度計には NEC Avio 赤外線テ クノロジー(株)社製のサーモトレーサ(TS9230W-AB2) を使用している。この機器の仕様を表2に示す。この赤 外放射温度計は、水平45.2°・垂直33.7°の範囲を水平 320ドット・垂直240ドット、データ深度14bit で撮影 する。測定波長は、熱赤外の波長帯域である8~13µm を測定している。

この赤外放射温度計によって各観測点で観測された、 設置当初の約1ヶ月間の観測データを図5に示す。図5 は上から、最高温度、平均温度、最低温度を表している。 Aポイント、及び、Cポイントでは観測範囲内に空中が 含まれてしまっているため、最低温度が異常に低くなっ ている。最高温度に注目すると、各観測点とも2月下旬 に急激に20 程度の温度低下が観測されているが、こ れは降雨の影響によるものである。また、Aポイントか らBポイント、Cポイントと標高が下るにつれて最高 温度がそれぞれ約40 、約35 、約25 と低くなって いる。これは、仮に熱源が沢の上流部あると仮定すれば、 熱伝導により下流部が上流部に比べて低温になっている とも考えられる。しかしながら、より下流部の上湯場付 近では県道734 号線を越えてさらに北側にも噴気が確認 されており、そう単純ではないかもしれない。

5. まとめ

大涌谷北側斜面において、2001年箱根群発地震活動 以降に噴気域が拡大していることが確認されている。そ のため、温泉地学研究所では、3地点に火山ガス・地温

表2 赤外放射温度計の主な仕様。

名称	赤外放射温度計(設置型赤外線サーモグラフィ装置)
メーカー	NEC Avio赤外線テクノロジー(株)
形式	サーモトレーサ(TS9230W-AB2)
温度測定範囲	-40~500°C
最小検知温度差	0.04°C
測定精度	±2%または読み取り値の±2%のいずれか大きい方
測定波長域	8∼13µm
検出器	2次元非冷却センサ(マイクロボロメータ)
瞬時視野角	2.4mrad
フレームタイム	60フレーム/秒
走査角	水平45.2°×垂直33.7°
画像データ	水平320×垂直240ドット
データ深度	14bit
放射率補正	0.10~1.00
焦点距離	30cm~無限

観測装置を導入し、硫化水素・二酸化硫黄、及び、赤外 放射温度計による噴気地帯の地表面温度の連続観測を開 始した。

これまでの観測中では、火山ガスないしは地温の上 昇による樹木の倒木が電力線に引っ掛かり、観測装置を 設置しているポールが傾斜したり、回転したりするトラ プル等が発生しており、噴気域での連続観測の困難さに 直面している。しかしながら、火山ガス濃度や噴気域の 温度変化は観測地点の危険性を監視するのみならず、箱 根火山全体の活動度を知るバロメータとなり得るである う。そのためにできるだけ安定し、継続した観測が必要 である。

謝辞

火山ガス・地温観測装置の設置については、環境省 関東地方環境事務所および東京神奈川森林管理所の方々 にご配慮、ご協力いただきました。ここに記して感謝し ます。

参考文献

- 伊東博(2009)温泉地学研究所における地震・地殻変 動観測施設の整備について,温地研観測だより,59, 9-12.
- 萬年一剛(2009)大涌谷噴気地帯における過熱蒸気 その歴史と消滅の理由,温地研報告,41,23-32.
- 棚田俊收(2008)箱根大涌谷から上湯場付近における地 熱活動域での立ち枯れおよび倒木の一因について, 温地研報告,40,85-86.
- 棚田俊收・代田 寧・板寺一洋(2008)箱根町大涌谷か ら上湯場付近における硫化水素および二酸化硫黄の ガス濃度と地温測定結果,温地研報告,40,23-28.
- 辻内和七郎・鈴木征志・粟屋徹(2003)箱根大涌谷で 2001(平成13)年に発生した蒸気井の暴噴事故と その対策,温地研観測だより,53,1-12.