本多 亮*

Anisotropic structures beneath Hakone volcano revealed by phase difference spectra by

Ryou HONDA^{*}

1. はじめに

火山の地下には多くの亀裂系が存在し、それらが地下 での熱水やガスの移動・上昇のチャンネルとして使用さ れ、群発地震活動や傾斜変動を引き起こすことがある。 箱根での例を挙げると、Yukutake *et al* (2011) では群発 地震の際に微小地震の震源が流体の移動に伴い同心円状 に移動していく様子が観測された。また 2015 年 6 月 に発生した水蒸気噴火の直前には、地下深部からの熱水 やガスが亀裂系を移動、上昇したことによって生じた傾 斜変動が観測されている(本多ほか、2015)。このこと から、火山体内の亀裂系の分布形状は、火山性地震の発 生や水蒸気噴火といった現象に大きく影響を与えると考 えられる。

地下に存在する亀裂系は、地震波の速度に異方性を生 じさせるため、地震波の異方性について調べることで地 下の亀裂系の情報をある程度得ることが可能である。地 震波の異方性を調べる方法としてよく用いられるのは、 S 波のスプリッティング (Shear wave splitting) 解析で ある。これはS波が異方性媒質中を伝播する際に、互 いに直交する振動ベクトルをもつ異なった速度のS波 に分離する現象を観測するものである。波が分離する原 因としては、物質を構成する鉱物の物性や地中のクラッ クなどが考えられている。異方性媒質の特性は、先行 波の振動方向(LSPD:Leading Shear-wave Polarization Direction)と後続波と先行波の到着時間差(Dt: Delay time)の観測から推定される。地中に存在するクラック によってスプリッティングが起こると仮定すると、クラ ック面に直交する方向に振動する遅いS波と、平行な方 向の振動方向をもつ速いS波の2つの波に分離する。

Honda *et al* (2014) は、S 波スプリッティング解析に より、地下の異方性構造について調べた。彼らはボアホ ール観測点である駒ヶ岳、小塚山、湖尻観測点の2007 年までのデータを用いて箱根の異方性構造を推定し、駒 ヶ岳付近では深さ5km付近まで徐々に異方性強度が減少 していくのに対し、湖尻及び小塚山付近では、深さ2km 付近までに異方性強度の強い媒質が存在する層構造的な 異方性構造を持っていることを示した。亀裂系の特徴的 なサイズは、スプリッティングパラメータが適用でき る信頼区間の高周波側の上限値から推定できる。Honda *et al* (2014)では2-8Hzの範囲で解析を行ったが、実際 には解析対象の周波数範囲よりも高周波数まで同じパラ メータで説明できることがある(例えば、Mizuno *et al*, 2001)。そこで本報告では、S 波スプリッティング解析 で得られたパラメータの適用可能な短周期側の限界(信 頼区間)を、Mizuno *et al* (2001)と同様の手法で推定 した。

2. 方法

まず Honda *et al* (2014) と同様の手法で S 波スプリ ッティング解析を行った。スプリッティングパラメータ の推定には、水平 2 成分の波形の相互相関係数を用い るクロスコリレーション法(例えば、Shih and Meyer, 1990)を採用した。データは 1995 年 1 月から 2015 年 12 月までに発生した M 0 以上の地震について、駒ケ 岳・小塚山・湖尻・元箱根・金時・大涌谷で観測され た速度波形に 2-8Hz のバンドパスフィルターをかけ、S 波部分を含む 0.5 秒間を切り出したものを使用した。た だし、各観測点への入射角が 40° よりも小さいイベン トのみを採用した。得られたパラメータ(LSPD, Dt)の 誤差は、t 検定によって推定した(Kuo *et al*, 1994)。推 定されたパラメータのうち、水平 2 成分の波形の相関 0.85 以上、LSPD の誤差が± 15°、Dt の誤差が 0.03 秒

* 神奈川県温泉地学研究所 〒 250-0031 神奈川県小田原市入生田 586

図1 水平2 成分の相互相関係数の分布。2015 年 5 月 14 日 9 時 28 分のイベントの例(湖尻観測点)。相関 係数が最大となるのは、回転角 39°、時間ずれ 0.09 秒の時(☆)。

以内の制約条件を満たしたものを採用した。図1に解析 結果の例を示す。

次に Mizuno et al (2001) の手法を用いて、スプリッ ティング解析で得られた LSPD、Dt の信頼区間を推定し た。2-8Hzの解析で得られたパラメータを用いて、フ ィルターを通さない生波形の回転・時間ずらしを行い、 2つの波形の位相差スペクトルを計算した(図2)。ス プリッティングパラメータを推定するために使用した周 波数帯(2-8Hz)においては水平2成分の位相差はほぼ 0となっていることが期待されるが、解析周波数帯の外 であっても、2-8Hzの解析で得られたパラメータが有 効であれば、同様に位相差が0に近くなるはずである。 位相差の小さい周波数帯を推定するため、2つの波形 の位相差スペクトルを計算したあと、10ポイント(約 4Hz分)の窓で位相差の移動平均とばらつきを計算し、 移動平均が±0.25rad、ばらつきが0.1以下である場合、 十分に位相差が小さいとした。同様の操作を観測点ごと にスプリッティングパラメータが得られたすべての地震 について行い、周波数ごとに位相差が十分小さいと判定 された数を積算し、信頼度ヒストグラムを作成した。波 形データは 0.5 秒分の長さしかないが、スペクトルを計 算する際に0埋めして見かけ上2.56秒の波形にする。 そのため、位相差スペクトルでは低周波数領域にもデー タが存在するが、2Hzよりも低周波側は物理的には意

 図 2 上: 2-8Hz の周波数帯の解析から得られた、 LSPD と Dt を用いて回転および時間をずらした波 形の S 波部分(フィルターなし)。下:二つの波形 の位相差スペクトル。10 ポイントの窓で位相差の 移動平均を計算し、その値が 0.25rad 以下かつば らつきが 0.1rad 以内の場合に、位相差が 0 に近い (+)とした。

味がない。

位相差スペクトルを計算するときに注意が必要なの が、観測設備の更新に伴うサンプリングレートの変更で ある。温地研の観測点はこれまで 1989 年に整備されて 以来、ロガーや地震計の更新に伴いサンプリングレート が変更されている。駒ヶ岳、湖尻は 2008 年にサンプリ ングが 120Hz から 200Hz に変更され、その他の点は 2010 年に同様の変更が行われている。スプリッティン グパラメータの信頼区間を推定するに当たり、長期間の データを比較するためにはサンプリングレートをそろえ る必要がある。そのため位相差スペクトルを計算する際 に、波形を線形補完して再サンプリングを行う周波数変 換フィルタを挿入して 200Hz に統一した。

3. 結果

図3に各観測点で推定されたスプリッティングパラメ ータを示す。金時観測点のLSPDは他の観測点に比較し て明らかに異なり、東西に近い方向を持っている。箱根 カルデラ内の金時山付近で発生する群発地震活動の震源 は、東西に並ぶように発生する傾向があることから、金 時山観測点付近の地殻には、東西方向に亀裂系が発達し ている可能性も考えられる。金時観測点を除いてLSPD はほぼ北西南東方向であり、広域応力場の方向に近い (例えば、Seno *et al*, 1993)。駒ヶ岳観測点は Honda *et al* (2014) で報告されているLSPD よりも 10 度程度南北 方向にずれているように見えるが、LSPD については誤 差を± 15° まで認めているので、この差の有意性につ いては検討が必要である。本報告では、推定されたスプ リッティングパラメータについては詳細な解釈は行わな い。

図4に、それぞれの観測点で得られたパラメータの信 頼度ヒストグラムを示す。このヒストグラムの数値の大 きい周波数帯では、2-8Hz で推定されたスプリッティ ングパラメータが有効であると考えられる。スプリッテ ィングが発生するのはクラックよりも波長が十分長いと する仮定が成り立つ範囲であるから、本来は低周波側 の位相差は0に近いはずである。しかし、いずれの観測 点でも低周波側で信頼度は高くなく、位相差が0になっ ていない場合も多いことを示している。これは、使用し ている地震が小さいためノイズの影響を強く受けている

図3 S波スプリッティング解析によって得られた、各 観測点のLSPDとDt。色付きバーは、その向きで LSPDを、長さと色でDtを表している。プロット されている位置は、観測点から見た方位と破線の 入射角を示す。ローズダイアグラムは、LSPDの 分布をグレーでしめし、伝播距離で重み付けした LSPDの分布を黒い太線で示す。

図4 図4の位相差スペクトルで、十分に位相差が小さいと判定された周波数(+)の頻度分布(実線:2015年のみ、 点線:2014年まで)。頻度が高いほど、信頼度が高い。ただし、最大値に意味はないので規格化してある

図 5 信頼度の LSPD による違い。点線は LSPD が N80^e-N110^e(東西)の波形、実線は LSPD が N120^e-N160^e(北 西一南東)の波形についての結果。大涌谷・金時観測点では、北西一南東方向の LSPD をもつ地震で 5Hz 以下と 9–11Hz 付近に信頼度の高い(位相差の小さい)周波数帯が存在する。

図6 移動平均を取る窓の幅を10ポイントとした場合 (上)と15ポイントとした場合(下)の、信頼区 間の違い(2015年6月4日大涌谷観測点)。位相 差が小さいと判定された周波数を赤の+で示した。 この例では、8Hz付近に位相差の大きな周波数帯 があり、その前後では位相差が小さい。

ことと、前述のように 2Hz より低周波側は FFT のため 便宜上データが存在するが物理的に意味がないことによ る。2014年までのデータで見ると、小塚山、元箱根では、 解析対象周波数帯よりもやや高周波数領域まで信頼度の 高い領域(位相差の小さい領域)が広がっているように 見える。ここで、高周波側の信頼度の高い領域を、解析 周波数の低周波側(2Hz)と信頼度が同程度の値まで の範囲だとすると、およそ 10Hz が信頼区間の周波数の 上限値である。また、広がりはやや小さいが、駒ヶ岳、 湖尻でも同様の傾向が見える。一方、金時、大涌谷では 信頼区間の高周波側への広がりが解析対象周波数の上限 である 8Hz よりも低い周波数までしか無いように見え る。2015年のデータのみで見ると、元箱根観測点も同 様の傾向が見られる。また、金時と大涌谷観測点での特 徴として、5-8Hz 付近でいったん信頼度が下がり(位相 差が大きくなり)、その後10Hz 前後で再び信頼度があ がる(位相差が小さくなる)傾向が見られる。次に、こ のような傾向がスプリッティングパラメータに依存する かどうかを調べた。

図3のLSPDの分布に見られるように、金時をのぞ く観測点では北西—南東方向、金時観測点では東西方 向に異方性が存在する。そこで、LSPDがN80°Eから N110°Eの範囲に入るデータと、N120°EからN160°E の範囲に入るデータに分けて、信頼区間を調べた(図5)。 すると、北西—南東方向のLSPDについてのみ、大涌谷

図7 移動平均を取る窓の幅を10ポイントとした場合 (上)と15ポイントとした場合(下)の、信頼区 間の違い(2015年6月3日大涌谷観測点)。位相 差が小さいと判定された周波数を赤の+で示した。 この例では、8Hz付近から位相差のばらつきが大 きくなり始め、10Hz付近より高周波側では大きく 変動しているが、平均を取る窓が狭いと、11Hz付 近で位相差が小さいと判定されている。 と金時観測点で、10Hz 付近に位相差の小さい周波数帯 が存在することがわかった。他の観測点では、このよう な変化は認められなかった。このことは、金時と大涌谷 観測点の近傍では、北西—南東方向の LSPD を持つデー タにのみ感度があるような、何らかの構造が存在してい ることを示唆している。

より詳細に調べるため、5-8Hz付近で位相差が大きく なるケースについて、位相差スペクトルを個別に検討し た。その結果、図6のように、8Hz付近にのみ位相差 が大きい周波数帯があり、その後位相差が0付近まで 戻っている場合と、図7のように高周波側で位相差の ばらつきが大きく、たまたま 10Hz 付近で平均が0に近 くなって条件をみたしている場合があることがわかっ た。後者については物理的な現象を示しているというよ り、パラメータの選択の仕方によるアーティファクトで ある。そこで、位相差の平均とばらつきを計算する窓を 10 ポイントから 15 ポイントに広げて再度信頼区間の 推定を行った。位相差を0と判定する条件は変更しない。 再解析の結果を図8に示す。10Hz付近に見られた信頼 度のピークはほぼ見えなくなり、大涌谷では信頼区間が 他の観測点と同様に高周波側まで広がる結果となった。 一方金時では、10Hz付近のピークは見えなくなったも のの、信頼区間の広がりはさらに低周波側に限定される 結果となった。

図8 位相差の判定窓を 15 ポイントにした場合の信頼度のヒストグラム。

4. まとめ

箱根山で観測されるスプリッティングパラメータにつ いて、周波数領域で信頼区間を推定した。その結果、小 塚山、元箱根では信頼区間の高周波側への広がりが顕著 であり、10Hz 程度までは同じパラメータで説明できる ことがわかった。また、駒ヶ岳、湖尻もやや広がりは 小さいが、解析対象周波数帯よりも高周波側まで信頼区 間の広がりがある。一方、金時、大涌谷では、位相差の 平均をとる窓を 10 ポイントとした場合には、信頼区間 の広がりが解析対象周波数の高周波側の上限よりも低い 周波数までとなり、かつ、10Hz付近で再び位相差が小 さくなる現象が見られた。しかし、位相差の平均をとる 窓を広げて同様の解析をしたところ、このような現象は ほぼ見えなくなり、大涌谷においても解析対象周波数よ りも高周波側まで信頼区間がのびる結果となった。金時 では、窓の幅をかえても高周波側に信頼区間は広がら なかった。8Hz付近での信頼度は、窓の取り方に大き く影響されることがわかったが、一方で図6のように、 8Hz付近でのみ位相差が大きくなる例も見られ、さら に LSPD が N120°E-N160°E の場合にのみ選択的に見ら れたことから、振動方向に依存した何らかの物理現象を 反映している可能性は残っている。

スプリッティングする波の波長が、クラックサイズよ りも十分に大きいという古典的な考え方に従えば、信頼 区間の短周期側の限界はクラックサイズの上限について の情報を持っていると考えられる。信頼区間の高周波側 の限界が10Hz であるとすれば、その観測点付近のクラ ックの特徴的なサイズの上限は200m ~ 300m 程度と 考えられる。金時では、高周波側の限界が4Hz 程度で あることから、クラックの特徴的なサイズの上限が他に 比べて大きく、500 m程度であることが示唆される。

謝辞

本研究では、温泉地学研究所のルーティン解析によっ て得られた箱根の震源データを使用した。この震源決定 には、温泉地学研究所の観測点の他、気象庁、防災科学 研究所、東京大学地震研究所の観測点のデータも使用さ れている。ここに記して感謝する。

参考文献

- Honda, R., Y. Yukutake, A. Yoshida, M. Harada, K. Miyaoka, and M. Satomura (2014) Stress-induced spatiotemporal variations in anisotropic structures beneath Hakone volcano, Japan, detected by S wave splitting: A tool for volcanic activity monitoring, J. Geophys.Res. Solid Earth, 119, 7043–7057, doi:10.1002/2014JB010978.
- 本多亮・行竹洋平・原田昌武・加藤幸司・宇平幸一・森 田祐一・酒井慎一 (2015) 箱根山のごく小規模噴火 に先立って 2015 年 6 月 29 日に観測された傾斜変動 と火山性微動について,火山学会予稿集 P48, pp146.
- Kuo, B., C. Chen, and T. Shin (1994) Split waveforms observed in northern Taiwan: Implications for crustal anisotropy, Geophys. Res. Lett., 21, 1491–1494, doi:10.1029/94GL01254.
- Mizuno, T., K. Yomogida, H. Ito, and Y. Kuwahara (2001) Spatial distribution of shear wave anisotropy in the crust of the southern Hyogo region by borehole observations, Geophys. J. Int., 147, 528–542.
- Seno, T., S. Stein, and A. E. Gripp (1993) A model for the motion of Philippine Sea Plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, 17,941–17,948, doi:10.1029/93JB00782.
- Shih, X. R., and R. P. Meyer (1990) Observation of shear wave splitting from natural events: South moat of Long Valley Caldera, California, June 29 to August 12, 1982, J. Geophys. Res., 95(B7), 11,179–11,195, doi:10.1029/JB095iB07p11179.
- Yukutake, Y., H. Ito, R. Honda, M. Harada, T. Tanada, and A. Yoshida (2011) Fluid-induced swarm earthquake sequence revealed by precisely determined hypocenters and focal mechanisms in the 2009 activity at Hakone volcano, Japan, J. Geophys. Res., 116, N04308, doi:10.1029/2010JB008036.