温度検層データから推定した箱根火山の地温勾配

原田昌武*·板寺一洋*·萬年一剛*·道家涼介*

The geothermal gradient estimated from temperature logging data in Hakone Volcano

by

Masatake HARADA*, Kazuhiro ITADERA*, Kazutaka MANNEN* and Ryosuke DOKE*

1. はじめに

箱根の温泉の熱源はどこにあるのだろうか、そしてそ れはどのぐらいの熱エネルギーがあるのであろうか。こ の基本的な疑問は箱根に限らず、温泉を持続的に利用す るためには解決しなければいけない問題である。

一方、箱根は火山である。そこでは 2001 年以降、数 年に 1 回のペースで火山活動が活発化している。原田 ほか (2010、2015) はこれまでに観測された地震活動 や地殻変動の時間変化から、箱根火山の活動モデルを提 案している。そのシナリオ的な活動経過によれば、箱 根の火山活動は、深さ 5 ~ 10km 程度の深部にあるマ グマだまりが膨張し、山体膨張として GNSS で観測され ることから始まる。その後、深さ 5 ~ 6km 以浅で群発 地震活動が観測されるが、これは、火山ガスや熱水な どの流体や熱が上昇しているためだと考えられている。 2001 年や 2015 年の活動の際には、さらにそれらの現 象の後に、大涌谷の噴気地帯において噴気量の増大や火 山ガス濃度の上昇など、明瞭な噴気異常が確認された。

また、1967年には、箱根火山の中央火口丘北東麓に ある強羅地域において、温泉温度が最大で約40℃上昇 する異常昇温現象が観測され、温泉の成因論とともに 議論されている(例えば、大木ほか、1968;平野ほか、 1968;板寺ほか、2013)。当時、この異常昇温に関連 するような顕著な地震活動は観測されていないが、火山 体内の熱構造や火山活動時の熱水系が熱輸送に重要な 役割を果たしていたと思われる。また、箱根火山では 2001年6月12日ごろから地震活動が活発化したが、 石坂ほか(2002)によれば、その直前の5月24日か ら26日にかけて強羅および二の平で源泉の温度が約3 ~5℃上昇していたことが報告されている。

このように、火山体下の地中温度構造は、温泉資源を

理解するだけでなく、火山活動を読み解くためにも必要 な情報である。そこで、本研究では温度検層データを使 用し、箱根火山下の地温勾配を求めるとともに、それか ら推定される地中温度について報告する。

2. 温度検層データ

地温勾配を推定するために、温泉地学研究所で実施 した温泉井の温度検層データを使用した(図1、表1)。 このデータは1958年からのものが紙記録で残っている が、本研究では1978年までの56地点分の温度検層デ ータを深さ0.2m間隔でデジタイズして利用した。温泉 井は浅いものもあるが、それらは浅部で80℃以上の高 温になっていることが多く、地温勾配に従った温度プロ ファイルではないため、孔底深度が90m以上のデータ を解析に用いた。なお、本論で利用した最も深い温泉井 の深度は800mである。

また、温泉井の分布には偏りがあり、中央火口丘西側 については温泉地学研究所が実施した温度検層データが 少ない。そのため、中央火口丘西側の5地点において は、温泉利用手続き(動力装置許可申請)の際に各事業 者が提出する温度検層図から孔底深度と孔底温度を読み 取り、地温勾配を推定した。

温度検層データ、つまり温泉井の深さと水温の関係は、 一般的に地質構造や地下水流動の影響を受けており複雑 である。たとえば、熱水の影響が強い上昇流卓越型(図 2A)や、地下水の影響を受けていると考えられる下降 流卓越型(図2B)がある。地温勾配を高精度で求める ためには、地温勾配がほぼ一定な伝導卓越型(図2C) のみを抽出したり、温泉井個別に取り扱う必要がある。 しかしながら、それはデータ数を減少させ、箱根火山全 体の地中温度構造を俯瞰するためには適切ではないと考

* 神奈川県温泉地学研究所 〒 250-0031 神奈川県小田原市入生田 586

-18-

表1 使用した	温度検層デーを	マと推定された対	地国勾配						
源泉番号	標司 (m)	孔底深度 ^(m)	孔底温度 (°C)	地温勾配 (°C/100m)	源泉番号	標高 (m)	孔底深度 ^(m)	孔底温度 (°C)	地温勾配 (°C/100m)
M027	964	-176	34.14	10.88	YM50	133	-304	60.99	15.13
MY63	617	-260	90.24	28.94	YM50b	143	-550	68.71	9.77
MY67	675	-394	143.18	32.53	YM55	134	-454	60.58	10.04
MY87	510	-469	86.52	15.25	YM58	157	-380	60.27	11.91
MY94	548	-450	94.29	17.62	YM60	136	-454	65.39	11.10
MY99	658	-340	27.52	3.68	YM67	131	-441	63.88	11.08
MY107	680	-495	140.86	25.43	YM68	170	-406	55.39	9.95
MY115	520	-318	65.67	15.93	YM6	113	-310	55.51	13.07
MY117	569	-400	103.03	22.01	YM74	170	-430	71.29	13.09
MY121	636	-412	120.13	25.52	YM80	186	-430	68.84	12.52
0D4	50	-450	34.04	4.23	YM81	195	-592	92.45	13.08
0N92	648	-400	134.82	29.95	YM83	107	-572	62.05	8.22
0N97	569	-285	34.86	6.97	YM85	239	-290	74.36	20.47
ON122	555	-318	88.83	23.22	YM86	179	-495	63.87	9.87
ON128	344	-796	72.75	7.26	YM87	166	-667	70.20	8.28
ON129	593	-495	80.54	13.24	YM88	175	-475	62.35	9.97
ON134	352	-799	77.45	7.82	YM91	203	-520	84.93	13.45
ON135	192	-799	71.71	7.10	YM93	185	-670	81.86	9.98
SE12	769	-600	61.48	7.75	7M96	191	-793	73.98	7.44
SE13	756	-750	86.34	9.51	YM105	189	-540	64.22	9.11
SE14	885	-610	95.23	13.15	YM108	1082	-765	86.80	9.39
SE16	891	-426	98.33	19.56	YM109	216	-732	73.13	7.94
YM12	108	06-	23.21	9.12	YM111	122	-539	71.25	10.44
YM16	135	-408	65.44	12.36	YM113	316	-800	86.88	8.98
YM19	142	-242	76.83	25.55	YM115	356	-670	62.37	7.07
YM41	125	-542	68.00	9.78	YM117	177	-601	63.07	8.00
YM44	162	-362	73.02	16.03	MO35	736	-780	75.50	7.76
YM45	132	-219	45.67	14.00	MO46	744	-1200	75.20	5.02
YM48	117	-372	59.34	11.92	M047	760	-1000	71.00	5.60
YM49	117	-364	63.22	13.25	MO48	745	-1000	42.00	2.70
					SE22	830	-600	52.70	6.28

図2 温度検層プロファイル(赤線)の例。青線(直線)は推定された地温勾配を示す。(A)上昇流卓越型、(B)下降流 卓越型、(C)伝導卓越型。縦軸の左側は地表からの深さを、右側は標高を示す。

えられる。そこでここでは、先行研究と同様に、温度検 層プロファイルの分類にかかわらず地表から孔底までは 直線的に地温が上昇すると仮定して地温勾配を推定した (例えば、若浜ほか、1995;菊川ほか、2007)。その場 合、温度勾配 G (℃/100m)は、

 $G = (Tb - Ts) / D \times 100$

となる。ただし、Tb は孔底温度(℃)、Ts は地表の年 間平均気温(℃)、D は孔底深度(m)である。気象庁 のアメダス(小田原観測点)の1981年から2010年の 平均気温が約15℃であることから、Ts は15と仮定した。

3. 地温勾配

推定された温度勾配を、図3および表1に示す。中 央火口丘を中心に全体的な特徴をみると、その東側にあ る宮城野地域の地温勾配は、15~30℃/100mと大き いことが分かる。それに対して、芦ノ湖に近い中央火口 丘の西側は、地温勾配が5℃/100m程度と、非火山性 の地域(2~3℃/100m;菊川ほか、2007)に比べれ ばいくぶん大きいものの、宮城野地域よりは明らかに小 さい地温勾配である。一方、湯本地域のそれは7~15 ℃/100m程度で、宮城野地域に比較して、地温勾配は やや小さい。これらの地域ごとの特徴は、推定された地 温勾配を温泉台帳区分ごとにまとめてグラフ化した図4 を見ても明らかである。

それぞれの地域を詳細に見れば、宮城野地域や温泉村 地域には地温勾配が大きい領域の中に、有意に勾配が小 さい部分がある(MY99、ON97)。一方、湯本地域には スポット的に地温勾配が大きい部分が存在する(YM19、 YM85)。これらは、深部からの熱水上昇や浅部地下水 の流入による影響が考えられる。そこで、次節で若干の 解析を試みる。

4. 温度差

伝導卓越型の温度検層データであれば、地温勾配から 推定される温度と、実際に観測された温度との差は、ほ とんどないはずである。しかしながら前節で述べた通り、 局所的には周辺の地温勾配と異なって、明瞭に高い、ま たは低い温度が観測されている。そこで、特定の標高に おける地温勾配から推定される温度と、その標高で実測 された温度の差を計算した(図5)。以後、これを温度 差と呼ぶ。その結果を図6に示す。

実測されている温度データが多い標高 0m と 100m での温度差には(図 6 A、B)、湯本地域に 1 つ、ないし は 2 つの高温域が見られる。これは温度差、つまり、地 温勾配から推定される温度よりも実測された温度が 10 ℃以上高いことから、それらの標高においては熱水が流 入していることが示唆される。

また、標高 300m での温度差を見ると(図6C)、宮 城野・温泉村地域のうち、西側の2個所では温度差が + 20℃程度あり、湯本地域と同様に熱水の流入の影響 があるものと考えられる。これに隣接する東側では、温 度差が-10~-20℃程度あり、そこでは冷たい地下 水が入り込んできている影響を受けているものと思われ る。このように、1km 未満のスケールで見ても、熱水

図4 各地域で推定された地温勾配。(A)宮城野地域、(B)温泉村地域、(C)湯本地域、(D)中央火口丘西側。

や地下水の流入、それらの混合などは非常に複雑である ことがわかる。菊川ほか(2007)は孔底深度 800m 以 上の温泉井を解析し箱根町や湯河原町の地温勾配は局所 的に火山活動による熱の影響を受けていると指摘してお り、本論の結果もそれと概ね調和的である。

5. まとめ

1958 年から 1978 年までに箱根火山の温泉井で観測 された、57 地点分の温度検層データを用いて地温勾配 を推定した。その結果は、中央火口丘の西側で地温勾配 が小さく、東側の宮城野地域や温泉村の一部では高いこ とが明らかとなった。また、湯本地域はその中間程度の 地温勾配であることがわかった。これらの特徴は、大木・ 平野(1972)によって示された箱根火山の地中温度と も概ね調和的である。さらに、地温勾配から推定される 温度と、観測された温度検層データとの温度差は、温泉 井近傍の熱水・地下水流入を反映していると考えられ、 湯本地域や宮城野・温泉村地域の西側では熱水が、宮城 野・温泉村地域の熱水流入域の東隣りでは地下水の流入 が認められた。

今後は順次新しい温度検層データを追加して、できる だけ火山全体をカバーするようにしたいと考えている が、温泉井は宮城野地域や湯本地域などに多く偏在する ことから、それらの地域にターゲットを絞ったローカル な解析をすることが有効であると考えられる。また、地 温勾配のみならず、地中温度構造やそれらが火山活動モ デルで果たす役割について解明していきたい。

参考文献

- 原田昌武・細野耕司・伊東博・明田川保・小林昭夫・本 多亮・行竹洋平・吉田明夫(2010)箱根火山の群発 地震と地殻変動,日本火山学会秋季大会,P29.
- 原田昌武(2015)箱根における火山活動の観測と最近 の状況,温泉,第83巻4号,24-25.
- 平野富雄・大木靖衛・田嶋縒子(1968)箱根強羅温泉の温度異常上昇と温泉成分の変化について,神奈川 県温泉研究所報告,1(6),51-62.
- 石坂信之・板寺一洋・菊川城司(2002)箱根群発地震 と温泉温度等の変化,第55回日本温泉科学会大会 講演集,19.
- 板寺一洋・菊川城司・吉田明夫(2013)1960年代に 箱根強羅の温泉で観測された異常昇温現象,温泉科 学,62,294-305.

菊川城司・小田原啓・板寺一洋(2007)孔底温度から みた神奈川県内の地温勾配,温地研報告,39,79-84. 大木靖衛・荻野喜作・平野富雄・広田茂・大口健志・守

図 5 温度検層プロファイル(赤線)の例。青矢印は地下水の流入による温度低下を、また、赤矢印は熱水の流入による温度上昇を示す。

矢正則(1968)箱根強羅温泉の温度異常上昇とその 水理地質学的考察,神奈川県温泉研究所報告,1(6), 1-20.

大木靖衛・平野富雄(1972)箱根温泉の湧出機構と成因,

地熱, 32, 15-29. 若浜洋・秋田藤夫・松波武雄(1995)北海道地温勾配 図説明書, 北海道立地下資源調査所, 44p.

-24-