大涌谷における熱赤外カメラによる連続観測とその特徴

原田昌武 *1

Characteristics of continuous observation by infrared thermal camera at Owakudani, Hakone volcano ^{by}

Masatake HARADA^{*1}

1. はじめに

箱根火山では火山活動に伴って、噴気地帯での噴気異 常や地表面温度の温度異常が観測されることがある。例 えば、2001年の群発地震活動の際には、噴気地帯であ る大涌谷(大涌沢)では噴気量が増加し、蒸気井の暴噴 が確認されている(辻内ほか,2003)。その群発地震活 動が終息した後も噴気地帯には影響が残り、噴気域は大 涌谷の北側斜面へ拡大していった(原田ほか、2012)。

2015年に火山活動が活発化した際には、4月頃から 山体膨張がGNSSで観測され、その後、地震活動が活発 化し、6月29日から7月1日にかけてごく小規模な水 蒸気噴火が発生した(原田ほか、2015; Mannen *et al.*, 2018; Harada *et al.*, 2018)。この活動に伴って、2001 年の時と同様に大涌谷の噴気活動も活発になり、大涌沢 の蒸気井の暴噴も地表面現象として確認されている。

このように噴気地帯の状況は、火山活動を反映する1 つの指標であると考えられ、火山ガスや地表面温度の 変化として観測される。例えば、代田ほか(2017)は、 大涌谷の北側にある上湯場周辺の新噴気域に対して繰 り返し火山ガスの調査を実施し、箱根の火山活動の消 長に応じて C/S 比(硫化水素と二酸化硫黄の合計濃度 に対する二酸化炭素濃度の割合)が変化することを明 らかにしている。また、安部ほか(2018)は火山活動 の評価も目的とし、大涌谷において小型紫外分光計を 用いた DOAS システム (Differential optical absorption spectroscopy)で繰り返し観測を行うことにより、二酸 化硫黄(SO₂)の放出量を定量的に観測し、噴火後の変 化をモニタリングしている。一方、萬年(2017)はタ イムラプスカメラを用いて一定間隔の可視画像を撮影 し、その画像の平均輝度から噴気量を定量化する試みを 行っている。

このように、噴気地帯の活動を評価するための取り組

みが行われている中、我々は噴気地帯の地表面温度に注 目し、観測を実施している。地表面温度の時間変化や高 温域の拡大・縮小を捉えるためには熱赤外カメラは有効 であり、温泉地学研究所では、2001年の群発地震活動 以降に顕著になった大涌谷北側の上湯場周辺において連 続観測を開始した(原田ほか、2010)。2015年の火山 活動の際には、同地域は特に顕著な地表面温度の変化は 観測されていない。一方、噴気活動が活発化し新たな噴 気口の形成や噴火口となった大涌沢を対象とした観測は 行われておらず、不定期に繰り返し観測を実施するのみ であった。

そこで、温泉地学研究所では火山活動の観測機能を強 化し活動評価に利活用するため、2015年の火山活動が おおよそ終息した2015年12月に、噴気監視カメラ観 測装置を大涌谷に設置し連続観測を開始した(原田ほか、 2016;写真1)。この装置には熱赤外カメラと可視カメ ラを併設している。本報告では、熱赤外カメラ設置以降 に得られている、大涌谷噴気地帯の地表面温度の観測結 果から、噴火後の傾向について報告する。

2. 熱赤外カメラ観測の概要

2015年の火山活動で特に噴気が活発化し、新たな噴 気口や火口を形成した大涌沢をモニタリングするため、 大涌谷に噴気監視カメラ観測装置を設置し連続観測を行 っている(図1)。カメラは箱根ロープウェイ大涌谷駅 出口の南東約30mに、2015年の火口域全体を見渡せ るように設置した。映像は、有線ネットワークを経由し て温泉地学研究所に送られている。それらのデータは、 熱赤外カメラについては5分間隔で静止画として、ま た可視カメラについては1秒毎の画像を動画として保 存している。

熱赤外カメラには日本アビオニクス(株)社製のサ

*1 神奈川県温泉地学研究所 〒 250-0031 神奈川県小田原市入生田 586 報告,神奈川県温泉地学研究所報告,第50巻,53-59,2018

写真1 大涌谷に設置した噴気監視カメラ(2016年2月19日撮影)。支柱上の左が赤外線カメラ、右が可視光カメラ。

図1 噴気監視カメラ観測装置(熱赤外カメラ及び可視カメラ)の設置場所。地形図は地理院地図を使用した。

ーモトレーサ (TS9260) を使用した。この熱赤外カメ ラでは広角レンズを使用しており、水平 45.2°・垂直 33.7°の範囲を水平 640 ドット・垂直 480 ドット、デ ータ深度 14bit で撮影する。測定波長は、熱赤外の波長 帯域である 8 ~ 14 μ m を測定している。撮影地点から 対象とする噴気地帯の距離は 100 ~ 200 m 程度である

図2 熱赤外・可視カメラによる観測結果の例。(a) 2016 年 5 月 19 日撮影、(b) 2017 年 5 月 22 日撮影、(c) 2018 年 5月21日撮影の熱赤外画像。(d) 熱赤外画像(2016年5月19日撮影)と可視画像(2017年8月22撮影)の 合成画像。(e) 2017 年 8 月 22 日撮影の可視画像。(A) から(L)の矩形は温度変化を解析した領域を示す。

ため、熱赤外画像の解像度は、1 ドットあたり約 0.12 ~ 0.25 m である。また、放射率は 1.0、測定温度範囲 は0~500℃のモードと固定した。なお、本来であれ ば大気補正や距離補正が必要であるが、本報告の目的は 地表面温度の絶対値を詳細に議論することではなく、同 一条件の観測による温度の相対的な時間変化を把握する ことであるので、現段階ではこれらの補正は行っていな い。そのため、得られる温度は噴気口等で直接実測する 値よりも、小さい値となることに注意が必要である。

熱赤外カメラ観測結果の例として、2016年5月19日、 2017年5月22日および2018年5月21日に観測さ れた地表面温度を図2に示す。撮影範囲を確認するた め熱赤外カメラの画像とあわせて、可視カメラによる画 像も同図に示した。雲、霧などの条件により、撮影対象 となる地表面が見えない場合には、適切な地表面温度が 観測できない。そのような例を図3に示す。気象条件 以外にも噴気量が多い時には、特に熱赤外カメラから見 て谷の奥側斜面では地表面が噴気によりマスクされるた めに、得られる温度がバラついたり、低温のデータとし て記録される場合があることに注意しながら、データを 見ることにする。

(d)

(e)

図3 雲・霧と噴気によって視界が不良となった時の (a)可視画像と(b)熱赤外画像の例。いずれも2016 年1月30日午前11時56分35秒に撮影されたもの。

3. 地表面温度の時間変化

3.1. 解析方法と全領域の傾向

2016年1月21日から2018年9月13日までの熱 赤外カメラ画像を解析に用いた。前述の通り、この画像 は5分間隔で取得しているが、日中は日射の影響があ りそれを避けるため、解析には毎日午前2時台の12枚 の画像のみを使用した。この観測期間中について、画像 の全範囲(640×480ドット)、すなわち図2(a)の画 像範囲全体の中から最高温度を抽出した結果と、全ドッ トの平均温度を計算した結果を図4に示す。

最高温度については各画像から最高温度を抽出した 後、毎日12枚の画像の中で一番温度が高いものを、そ の日の最高温度の値とした。そのため、最高温度を観測 した場所(ドット)は、必ずしも同じ場所とは限らない。 また、平均温度については各画像の平均温度を求めた後、 毎日12枚の平均温度の平均値を計算することによって、 日々の平均温度とした。なお、熱赤外カメラの測定範囲 は仕様上0~500℃であるが、データに含まれるノイ ズによっては熱赤外バンドの強度から温度に変換する際 に0℃以下の値が推定され得る。そのため、約-10℃ の値まで存在し平均温度が0℃を下回ることがあるが、 グラフは下限を0℃までとした。

平均温度について見てみると、毎年8月あたりをピー クとする年周変化がみられる。各画像は、噴気地帯(地 表面温度の高い領域)よりも非噴気地域(地表面温度の

図4 画像全体から得られた最高温度(赤)と平均温度(黒)。直線(青)は、最小二乗法により推定された線形トレンド。 最高温度と平均温度の抽出方法や、線形トレンドの推定方法については、本文参照。

高くない通常の地面)の面積が多いため、平均温度は気 温と同じように、年周変化をしている状況を捉えている。

一方、最高温度については、噴気や雲、霧等の気象条 件により、多少のバラつきはあるものの、2016年の観 測開始以降は、温度が低下してきていることが分かる。 このように下方にランダムに暴れているデータから正確 に温度の変化速度(温度変化率)を見積もることは困難 であるが、次の手順により年間の温度変化率を推定した。 まず、最高温度の全データから最小二乗法により線形ト レンドを計算する。そして、求められた直線と観測デー タとの残差を求め、残差の標準偏差(σ)を計算する。 噴気や気象条件による温度のバラつきは必ず下方、つま り温度低下として観測されるため、残差が-1σを超 えるデータは外れ値として除外し(上方の+1σ以上は 除外しない)、再度、最小二乗法により線形トレンドを 推定した。こうして温度変化率を計算した結果、最高温 度は年間7.7℃の割合で温度が低下してきていることが 分かった。

3.2. 各領域の時間変化

大涌沢では噴気口や火口など、明瞭な高温域が存在す る。そこで、熱赤外カメラの画像でも高温が識別しやす い代表的な 12 ヶ所について、それぞれの領域における 最高温度と平均温度を、前節と同様に計算した結果を図 5 に示す。領域(A)から(L)については、図 2(a)に 示している。全ての領域で、平均温度は気温による年周 変化をしており、以下では最高温度の変化についてのみ 着目する。なお、年間の温度変化率(℃/yr)については、 前節と同様の方法により推定した結果を記す。

領域(A)から(C)は、熱赤外カメラから見て谷の 手前側の場所であり、噴気量が多い時でも比較的その影 響を受けにくい領域である。領域(A)(B)については、 噴気口のような特定の場所からの噴気ではなく、面的に 噴気が上がり、高温域となっている。この場所の最高温 度の変化を見ると(図 5A,B)、2016 年 8 月くらいまで は徐々に温度が上昇する傾向にあるが、それ以降は低下 傾向に転じ、2017 年 8 月頃からは、年周変化のように 変動している。温度変化率を推定すると、観測開始から 2016 年 7 月 31 日までは領域(A)で 17.9 \mbox{C} /yr、領 域(B)は 28.7 \mbox{C} /yr の上昇、2016 年 8 月 1 日から 2017 年 12 月 31 日までのデータからは、領域(A)で 30.4 \mbox{C} /yr、領域(B)は 19.4 \mbox{C} /yr の割合で温度が低 下していると推定される。

特に領域(A)では、2017 年 10 月頃からは、平均温 度よりも5℃程度高いものの、平均温度と同じような 年周変化を観測している。年周変化と同様の変化をして いるということは、地下からの放熱量が気温の季節変動 による熱変化に打ち勝つほどのものではないことを示し ていると考えられる。このことから、領域(A)(B)に ついては、熱異常がおおよそ収まりつつあるとみられる。 領域(C)についても、観測開始から2017年5月31 日までは16.6℃/yrで温度が上昇傾向にあるが、それ 以降(2017年6月1日から)は22.4℃/yrで低下し ている。

領域(D)と(E)は、蒸気井である。そのため、人 工的な影響も考えられるが傾向を概観すると、領域(D) については領域(A)、(B)と同じく2016年8月頃か ら低下傾向がみられる。2016年8月1日から2017年 11月30日のデータから温度変化率を推定すると、9.3 ℃/yrで温度は低下している。その後、2018年1月以 降に温度は上昇しているが、4月以降は一定の温度で 推移しているとみられる。また、領域(E)については 2016年1月から9月にかけて温度が上昇しているよう に見える。この時期の変化は、図3のように噴気量が 多く、正確な温度が観測されていないためであり見かけ 上、温度が上昇しているように見えている可能性がある。 それ以降も噴気が対象領域をマスクすることが多く、温 度はバラついているが、最高温度のプロットの上限を見 る限り、50~60℃で安定しているように見える。

領域 (F) は、解析範囲の中で大涌沢の最上流部である。 この領域では 2017 年 5 月から 6 月にかけて 5 $\$ 程度 昇温しているが、最高温度はその時期の前も後も、おお よそ安定しており、一定の温度を維持しているように見 える。また、領域 (G)、(H) では、噴気等により熱赤 外画像がマスクされることもあるが、両地域ともに温度 は低下傾向にある。全期間を通した温度変化率は、領域 (G) で 14.1 $\$ /yr、領域 (H) は 6.1 $\$ /yr の割合で温 度が低下している。

領域(I)から(L)は、熱赤外画像中では大涌沢の下 流部にあたる。これらの領域は、特に噴気等の影響が大 きく、最高温度は解析期間を通してバラついている。そ のため、最高温度のプロットの上端を見ることしかでき ないが、領域(I)、(J)、(K)については平均温度より 20~40℃程度高温で、平均温度と似た年周変化をして いるように見える。また、領域(L)については2017 年9月頃までは高温を維持していたが、その後、急速 に温度は低下し、40℃程度で推移している。なお、領 域(I)では2017年7月から8月にかけて、一時的に 温度が上昇しているが、原因はわからない。

図5 各領域で得られた最高温度(赤)と平均温度(黒)。直線(青)は、最小二乗法により推定された線形トレンド。 (A)から(L)は、図2の領域(A)から(L)に対応する。

4. まとめ

箱根火山では 2015 年に火山活動が活発化し、大涌 谷では噴気活動も盛んになった。温泉地学研究所では、 2015 年噴火に関連する地震・地殻変動が概ね終息し、 噴火警戒レベルが1に戻った翌月の 2015 年 12 月に、 大涌谷に熱赤外カメラを設置し、連続観測を行っている。 そのため、噴火前後の変化はわからないが、噴火後も活 発である噴気活動の推移を把握するため、熱赤外画像を 用いた地表面温度の解析を行った。

その結果、熱赤外画像全域の最高温度は、年間7.7℃ 程度で低下してきていることが明らかとなった。ま た、いくつかの噴気口や高温域を切り出して地表面 温度の変化を抽出した結果、多くの領域では(領域 A,B,C,D,G,H,L)、各領域内の最高温度が低下傾向にある ことが分かった。また、大涌沢の下流部にある領域(I)(J) (K)では、観測を開始して以降、領域内の平均温度と 同じような年周変化を観測している。これは、この領域 では2015年の火山活動による影響が少なく噴気異常、 すなわち噴気量や地表面温度の変化自体が元々少なかっ たことを示している可能性がある。その他、領域(E)(F) では、最高温度がほとんど変わらず、おおよそ一定の温 度であった。

このように、熱赤外画像の解析結果からは、大涌沢の 地表面温度は全体的に低下傾向にあり、温度が上昇して いる領域は見られなかった。これは、2015年の噴火に 伴って活発化した噴気や地熱の活動が減衰して、地表面 温度が低下してきている様子を捉えているのかもしれな い。

今後、再び火山活動が活発化し、噴気異常が発生する ことがあれば、噴気自体によって適切な地表面温度が観 測できないこともあるが、熱赤外カメラによる観測で温 度上昇などの変化が観測されることも期待される。ま た、本報告では高温域の面積変化については扱わなかっ たが、温度異常が発生すれば、その領域が拡大すること も想定され、それはこの観測によって捉えられると考え られる。そのため、今後も安定した観測が継続できるよ う、維持・運用していきたい。

謝辞

観測機器の整備・設置にあたっては、大涌谷に関わる 様々な機関の方々にご理解・ご協力・ご配慮をいただき ました。ここに記して深く感謝します。

参考文献

- 安部祐希・原田昌武・板寺一洋・森健彦・高木朗充(2018) 箱根火山大涌谷における二酸化硫黄放出率〜観測・ 解析手法と2018年6月までの放出率の推移〜, 温地研報告,50,1-18.
- 代田寧・大場武・谷口無我(2017)箱根火山における 活動活発化に連動した噴気組成(C/S比)の変化, 温地研報告, 49, 29-38.
- 原田昌武・棚田俊收・伊東博(2010)箱根大涌谷北側 斜面における火山ガス・地温の連続観測,温地研 報告,42,57-61.
- 原田昌武・小田原啓・松沢親悟・代田寧・板寺一洋・寺 田暁彦(2012)箱根大涌谷の北側斜面における近 年の地表面変化と熱赤外カメラによる観測,温地 研報告,44,55-62.
- 原田昌武・板寺一洋・本多亮・行竹洋平・道家涼介(2015) 2015 年箱根火山活動に伴う地震活動と地殻変動の 特徴(速報),温地研報告,47,1-10.
- 原田昌武・板寺一洋・伊藤正規・湯尾康成(2016) 緊 急的な火山観測施設の整備について~2015 年箱 根火山活動への対応録~,温地研観測だより,66, 17-24.
- Harada, M., Doke, R., Mannen, K., Itadera, K., Satomura, M. (2018). Temporal changes in inflation sources during the 2015 unrest and eruption of Hakone volcano, Japan. Earth, Planets and Space. 70:152. doi: 10.1186/s40623-018-0923-4.
- 萬年一剛(2017)大涌谷噴気地帯を撮影した画像の平 均輝度の日別変化と火山活動の関係,温地研報告, 49,39-48.
- Mannen, K., Yukutake, Y., Kikugawa, G., Harada, M., Itadera, K., Takenaka, J. (2018). Chronology of the 2015 eruption of Hakone volcano, Japan – geological background, mechanism of volcanic unrest and disaster mitigation measures during the crisis. Earth, Planets and Space. 70:68. doi: 10.1186/s40623-018-0844-2.
- 辻内和七郎・鈴木征志・粟屋徹(2003)箱根大涌谷で 2001(平成13)年に発生した蒸気井の暴噴事故 とその対策,温地研観測だより,53,1-12.