温泉地学研究所における新たな GNSS 解析戦略について

道家涼介^{*1}·原田昌武^{*1}·板寺一洋^{*1}·加藤照之^{*1}·中村康弘^{*2}

A new strategy of GNSS analysis in the Hot Springs Research Institute of Kanagawa Prefecture

by

Ryosuke DOKE^{*1}, Masatake HARADA^{*1}, Kazuhiro ITADERA^{*1}, Teruyuki KATO^{*1} and Yasuhiro NAKAMURA^{*2}

1. はじめに

神奈川県温泉地学研究所(以下、温泉地学研究所)で は、箱根火山を含む神奈川県西部地域の地殻変動を監 視する目的で、17 観測点(臨時観測点を含む)からな る全球測位衛星システム(Global Navigation Satellite System; GNSS)^{達1)}による観測網を独自に展開している。 これに、国土地理院が全国に展開している GNSS 観測網 (GEONET)と、気象庁が火山監視のために足柄下郡箱 根町仙石原に設置している観測点を含めると、神奈川県 西部地域では、GNSS 観測点がおよそ5~10 kmの間 隔で展開されていることになる。

GNSS による観測データは、受信器に記録された raw データから、共通フォーマットである RINEX 形式のデ ータに変換される。また、同データに対し、衛星の精 密軌道情報(暦)を用いた解析を行うことにより、数 cm ~数 mm の精度で地殻変動を観測することが可能 である。温泉地学研究所では、独自の観測点に周囲の GEONET 観測点および気象庁による観測点を加えた統 合解析を、Bernese GNSS Software (スイス・Bern 大学) を用いて行なってきた(道家ほか、2013; Doke et al., 2018)。また、解析および結果の作図は自動化されてお り、箱根火山や神奈川県西部地域の地殻変動のモニタリ ングに用いられてきた。しかし、これまでの解析システ ムでは、後述する基準点座標値の推定に関して問題があ った。そこで、2020年1月末に解析システムを入れ替 えるにあたり、GNSS 解析戦略の見直しを実施した。本 報告は、その概要を資料として報告するものである。

2. 解析戦略

2.1. 解析対象の観測点

新解析システムにおいて解析対象としたのは、図1

に示した観測点であり、神奈川県を中心に、東京都、静 岡県、山梨県、千葉県に分布する観測点を選択した。ま た、基準点(後述)として使用するため、茨城県つくば 市にある観測点も使用している。

2.2. 解析の概略

新しい解析システムにおいては、解析エンジンとして Bernese GNSS Software 5.2 (Dach *et al.*, 2015) を用い ている。

解析は、3種類の衛星軌道情報(暦)を用いて行われる。 これらの暦は、International GNSS Service (IGS) によ り発行され、精度が良い順に、最終暦 (Final)、速報暦 (Rapid)、超速報暦 (Ultra-rapid) である (表 1)。最終 暦は約3週間後、速報暦は約1日後、超速報暦はリア ルタイム (予測値を含む)に発行される。解析は、まず、 3時間に1度過去6時間分のデータに対し、超速報暦 を用いた解析を行う^{谁2)}。これにより、3時間ごとに観 測点座標(6時間値)が得られる(1日8回)。また、1 日に1度、2日前の24時間データに対し、速報暦を用 いた解析を行う。これにより、2日前の座標(日値)が 得られる。同様に、4週間後の日曜日に24時間データ に対して、最終暦を用いた解析を実施し、4週間前の一 週間分の座標(日値)を得る(表 1)。

解析の際の基準点の初期座標値は以下のように決定される。最終暦の解析において基準点となる観測点の初期 座標は、精密単独測位(Precise Point Positioning; PPP) により決定される。基準点として使用する観測点は、 GEONET つくば1観測点で、データが欠測した場合は、 GEONET つくば3、IGSのTSKB(つくば)観測点の順 で基準点として使用する。この PPP 解析による基準点 の初期座標の決定は、最終暦の解析の際のみ実施され、

*1 神奈川県温泉地学研究所 〒 250-0031 神奈川県小田原市入生田 586
*2 日立造船株式会社 〒 140-0013 東京都品川区南大井 6-26-3 大森ベルポート D 館 11 階 資料,神奈川県温泉地学研究所報告,第 52 巻,63-68,2020

図1 観測点分布図。青丸が温泉地学研究所、赤丸が気象庁、黒丸が国土地理院による観測点(GEONET)を示す。 ただし、2019年の間に観測データが存在する観測点のみを示している。温地研:温泉地学研究所。

その初期座標を用いて全観測点を対象とした基線解析が 実施される。速報暦、超速報暦による解析の際には、直 近の最終暦の解析結果を基準点の初期座標値として参照 する(表 1)。

解析対象の衛星は、アメリカ合衆国が運用する GPS のみとしている。温泉地学研究所の観測点の内、いく つかはロシア航空宇宙軍が運用する GLONASS も受信 しているが、同衛星の解析結果には,8日間周期の系 統的な誤差が含まれることが判明しているため(檜山、 2019)、同衛星については解析から除外した。 対流圏遅延の補正は、最終暦の解析については数 値気象モデルとして約1週間後に公開される Vienna Mapping Function (VMF; Boehm and Schuh, 2004)を、 速報暦・超速報暦の解析については、Global Mapping Function (GMF; Boehm *et al.*, 2006)を用いて行う(表 1)。

その外、解析に使用するファイルとその取得先につい て表 2 に示した。なお、解析の際に参照する座標系と して、ITRF 2014(Altamimi *et al.*, 2016)を使用して いる。

表1 衛星軌道情報(暦)とそれぞれにおける解析戦略

衛星軌道情報	解析間隔	解析の実施	解析	対流圏遅延 の補正
超速報暦 (Ultra-rapid)	6時間データを3時間 ずつずらして実施	3時間毎	基線解析のみ	GMF
速報暦 (Rapid)	24時間に1回	2日後	基線解析のみ	GMF
最終暦 (Final)	24時間に1回	4週間後	PPP+ 基線解析	VMF

表2 解析に使用するファイルとその取得先

取得先	種類	ファイル単位	
国土地理院 (日本)	RINEXデータ	1時間	
	衛星軌道情報(GPS)	最終暦/速報暦:1日	
	SP3ファイル	超速報暦:6時間	
NASA CODIS		最終暦:1週間	
(アメリカ)	地球回転バフメータ FRPファイル	速報暦:1日	
		超速報暦:6時間	
-	時計情報 CLOCKファイル	1日	
	Differential Code Bias DCBファイル	1ヶ月	
- University of Bern (スイス)	全球電離層モデル IONファイル	1日	
	衛星情報ファイル	-	
-	衛星問題ファイル	1年	
Vienna University of Technology (オーストリア)	数値気象モデル	6時間	

項目	旧システム	新システム		
解析エンジン	Bernese GNSS Software	Bernese GNSS Software		
	Version 5.0	Version 5.2		
解析間隔	超速報暦 1日 最終暦 1日	超速報暦 6時間(3時間毎)		
		速報暦 1日		
		最終暦 1日		
解析	基線解析のみ	PPP +基線解析		
観測点	温泉地学研究所+気象庁+IGS 5点+	温泉地学研究所+気象庁+		
	神奈川県周辺のGEONET 29観測点	GEONET 76点 +IGSつくば(図1)		
基準点および 座標決定	IGS観測点を使用	GEONETつくば1観測点を使用 PPP解析により、都度推定		
	ITRF2008座標系における			
	初期座標および速度を使用			
座標系	ITRF2008	ITRF2014		

表3 旧解析システムとの比較

2.3. 旧解析システムとの違い

旧解析システム(道家ほか、2013; Doke et al., 2018)における解析戦略との違いを表3に示した。大 きな違いとしては、旧解析システムでは、基準点とし て IGS の観測点を同時に解析しており、その変位を強く 拘束していた。そのため、2 観測点の相対的な位置関係 については問題ないものの、各観測点の座標値につい ては、IGS 観測点の変位に影響を受ける結果となってい た。具体的には、2011年の東北地方太平洋沖地震によ り、旧解析システムで基準点としていた IGS の TSKB(つ くば)観測点が東方向に大きく変位した。旧システムで は TSKB を大きな変位がないものとし基準点として使用 したため、他の観測点は、東方地方太平洋沖地震後の本 来の変位方向とは逆に、西向きに変位する結果となって いた。新システムでは、その都度、基準点の初期座標値 を PPP 解析により求める。したがって、仮に今後、基

図2 大涌谷観測点における座標変化時系列グラフ(2020年1月1日~9月4日)。各グラフは、それぞれ(a)超 速報暦、(b)速報暦、(c)最終暦における解析結果を示す。グラフは変位の東西成分を示しており、正の値が東向 き、負の値が西向きの変位を示す。

準点が大きく変位することがあっても、少なくとも最終 暦の解析については、その影響を回避できることが期待 される。加えて、超速報暦、速報暦についても、最終暦 の解析後は初期座標値が更新されることから、影響の回 避が可能と考えられる。

3. 解析結果の例

解析結果は、各観測点の座標変化および、2観測点間 の基線長変化、ベクトル図などとして可視化し、表示を 行う。

図2は大涌谷観測点の座標変化グラフであり、東西 成分について、それぞれ超速報暦、速報暦、最終暦の解 析結果について図示している。超速報暦については、精 度では他の解析結果よりも劣るものの、1日当たり8回 データが取得でき、時間分解能の面で有益である(図 2a)。例えば、火山活動や地震、もしくは人為的な原因 により、ステップ状の変化が生じた場合に、より時間を 絞った検討が可能になることが期待される。速報暦の解 析結果については、結果のバラつきは少ないものの、対 流圏遅延などに起因していると思われる系統的な座標値 のズレ(例えば、2020年4月下旬や6月中~下旬)が 存在する(図2b)。また、この系統的な座標値のズレは 超速報暦の結果(図2a)においても存在するが、それ らは、最終暦の解析結果では解消されていることが分か る(図2c)。

図3には、最終暦の解析結果について、温泉地学研 究所屋上の観測点を固定とした場合のGEONET 裾野2 観測点の変位を示している。2015 年やその後の火山活 動による山体膨張による基線長の伸びを見ることができ る。新システムの運用開始後の2020 年以降であれば、 超速報暦の解析の運用を開始しているため、3 時間毎の 基線長変化も描画可能である。

なお、解析結果の内、日々の座標値については、温泉 地学研究所の地殻変動データベース(本多ほか、2006) にも登録されるようにした。

4. まとめ

本資料では、温泉地学研究所における新しい GNSS 解

図3 温泉地学研究所屋上の観測点に対する GEONET 裾野2観測点の変位時系列グラフ(2015年1月1日~2019年 12月31日)。最終暦による解析結果を示しており、各グラフは、それぞれ(a)南北成分、(b)東西成分、(c)上 下成分、(d)基線長変化を示す。各グラフによる正の値は、それぞれ、(a)北向き、(b)東向き、(d)上向き、(e) 伸張を示す。

析戦略の概略について報告を行なった。本解析戦略の導 入に伴い、従来の解析戦略における基準点の初期座標の 問題が解決されるとともに、超速報暦による解析では、 3時間毎に座標値を求めることが可能となった。また、 解析結果の内、日々の座標値は、温泉地学研究所のデー タベースサーバーにも登録され、同サーバー内での作図 や基線長データの出力についても可能となった。

謝辞

2名の査読者のコメントにより本稿は改善されました。ここに記して感謝いたします。足柄下郡箱根町仙石原に設置されている GNSS 観測点のデータについては、気象庁より提供を受けています。また、国土地理院のGEONET 観測点のデータについては、同院の FTP サーバーを通して取得しています。関係する方々にお礼申し上げます。

参考文献

Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux,

X. (2016) ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121(8), 6109-6131. https:// dx.doi.org/10.1002/2016JB013098

- Boehm, J., & Schuh, H. (2004) Vienna mapping functions in VLBI analyses. Geophysical Research Letters, 31(1). https://dx.doi. org/10.1029/2003GL018984
- Boehm, J., Niell, A., Tregoning, P., & Schuh, H. (2006) Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33(7). https://dx.doi.org/10.1029/2005GL025546
- Dach R., Lutz S., Walser P., & Fridez P. (2015) Bernese GPS Software Version 5.2, Astronomical Inst. Univ. Bern.
- 道家涼介・原田昌武・宮岡一樹・里村幹夫(2013)神 奈川県を対象とした Bernese による GPS 統合解析

表示システムの構築,神奈川県温泉地学研究所報告,45,63-70.

- Doke, R., Harada, M., & Miyaoka, K. (2018) GNSS Observation and Monitoring of the Hakone Volcano and the 2015 Unrest. Journal of Disaster Research, 13(3), 526-534. https://dx.doi.org/10.20965/ JDR.2018.P0526
- 檜山洋平(2019)マルチ GNSS を活用した GEONET の 新たな解析手法について,第48回国土地理院報 告 会,https://www.gsi.go.jp/REPORT/HAPPYOU/ main48.htm
- 本多 亮・丹保俊哉・原田昌武・伊東 博・板寺一洋・

棚田俊收(2006)温泉地学研究所におけるウェブ 上での地震および地殻変動データ公開用サブシス テムの開発,神奈川県温泉地学研究所報告,38, 53-62.

- 注 1) GNSS は、アメリカ合衆国が運用する GPS や、
 ロシア航空宇宙軍が運用する GLONASS などの衛星
 測位システムの総称である。
- 注2) この解析に対応するため、温泉地学研究所の観 測点については、1日1回24時間分のデータを取 得していた仕組みを、1時間に1回1時間分のデ ータを取得するように変更を行った。