小田原市小台における自噴井戸の調査報告

二宮良太 *1・難波あゆみ *1・宮下雄次 *1

Report on investigation of artesian well in Kodai, Odawara City

by

Ryota NINOMIYA^{*1}, Ayumi NAMBA^{*1}, Yuji MIYASHITA^{*1}

1. はじめに

神奈川県西部に位置する足柄平野は、箱根外輪山及 び大磯丘陵に挟まれた幅4km、長さ12kmのほぼ矩形 の扇状地性の沖積平野である(図1)。当所では、これ までに足柄平野の地質構造、地下水の流動状況につい て報告してきた。足柄平野の地質縦断面図(小沢ほか、 1982)によると、平野には良好な帯水層となる厚い砂 礫層が広く分布しており、平野上流域では顕著な不透水 層は認められず、全層が同一帯水層とみなされる(図2)。 平野中・下流域においては、透水性の良い火山砂礫層が 泥層により上下に2分され、泥層が不透水層の役割を果 たすことで第2帯水層の地下水は被圧されている。その 被圧帯水層から取水するため掘削された多くの井戸が自 噴することで、平野の中・下流域に自噴帯が形成されて いる。

足柄平野の地下水系には足柄平野水系と箱根水系があ り、主な涵養源は平野への降水、平野上流部から浸透し た表流水や灌漑用水、および箱根外輪山への降水である。 横山ほか(1999)は、温度検層及び、箱根外輪山と平 野部の地下水のトリチウム濃度分布の結果をもとに、箱 根外輪山方面から酒匂川水系の下に向い、対流年数が長 く、温度の低い地下水が侵入している可能性を指摘して いる。水系による地下水の水質の違いについても報告さ れている。箱根水系の水質は足柄平野水系の水質に比べ

図1 足柄平野の航空写真(赤色星印は調査対象地を示す)

*1 神奈川県温泉地学研究所 〒 250-0031 神奈川県小田原市入生田 586 報告, 神奈川県温泉地学研究所報告, 第 55 巻, 51-55, 2023

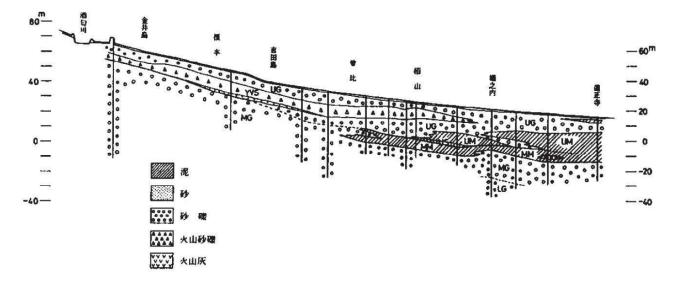
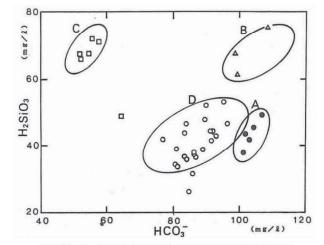


図2 足柄平野の地質縦断面図(小沢ほか、1982)


て炭酸水素イオンの濃度が少なく、メタケイ酸が多い特 徴があり(図3)、箱根水系の地下水の水温は15℃台と 平野部の地下水の16℃台に比べて低い傾向にある。狩 川沿いの被圧地下水では、狩川からの涵養よりも、箱根 火山側からの涵養が多くなされている地域がある(藪崎 ほか、2000)。これまでの足柄平野の自噴井戸の実態調 査により、自噴帯の分布範囲や自噴量の経年変化につい て報告されている(日比野ほか、1999や宮下、2013 な ど)。被圧帯水層の分布を把握する試みとして、微動観 測装置を用いたS波速度構造探査による地下の土質分 布の把握が報告されている(宮下、2023)。

以上より、自噴井戸の水質を調べることにより足柄平 野における地下水系の推定が可能である。本研究では、 これまでの実態調査では調査が行われていない足柄平野 の中流部の自噴井戸について調査を行った。この自噴井 戸は日常的な地下水の利用が無いため孔内カメラによる 観察ができ、自噴井戸と同一敷地内におけるS波速度 構造探査も実施が可能であった。井戸の水質、自噴量、 自噴高さなどを調べる地下水調査に加えて、孔内カメ ラによる内部構造の観察及びS波速度構造探査を行い、 対象地付近の被圧帯水層の分布状況について検証したの で報告する。

2. 方法

2.1. 調査地点

2023年3月3日、小田原市小台に位置する自噴井戸 1地点を対象に現地調査を実施した(図1)。微動アレ イ探査は同年7月10日に実施した。自噴井戸は、足柄 平野中流部の狩川沿い(左岸)に位置している。

Relationship between hydrobicarbonate and meta-silicic acid contained in flowing well waters in Ashigara plain (A: Groundwater in the upper part of flowing area, B: Groundwater along Oiso hills, C: Groundwater on the foot of Hakone volcano, D: Groundwater in the middle and lower part of the Ashigara Plain).

図3 足柄平野自噴井戸の水質による分類(横山、 1999)

2.2. 調査手法

現地では一般的な地下水調査(水温、pH、電気伝導 率、自噴量及び自噴高の測定および採水)のほか、孔内 カメラによる井戸構造の調査、微動アレイ探査を行った。 現地にて採水したサンプルは、実験室にてイオンクロマ トグラフ及び ICP 発光分光分析法を用いて溶存成分量 を測定した。自噴量は容積法により測定を行い、自噴高 は井戸管に接続したホースを立ち上げ、地表からの高さ を測定した。井戸構造の調査には、レアックス社製孔内 カメラを使用した。カメラ映像を通して目視によりスト レーナの位置等を確認しながら、孔内カメラのケーブル に記載されたメジャーから孔底及びストレーナの深さを 確認した。

対象地直下におけるS波速度構造明らかにするため、 自噴井戸から南方向に12mの地点を中心とした微動ア レイ探査を行った。微動観測装置は白山工業株式会社製 JU410を用い、サンプリングレートを200Hzで行った。 微動探査は、中心及び中心から距離0.6mの位置に微動 計3台を等間隔に配置する極小アレイ配置に、中心から 距離5mの位置に2台の微動計を配置する異形アレイ 配置を組み合わせて行った(図4)。また微動探査結果 の解析は、先名ほか(2014)の方法に従い、S波速度と 地質の関係から地下構造の推定を行った。

3. 結果

3.1. 自噴井戸の地下水調査結果

地下水の水質分析結果を表1に示す。横山ほか(1999) は、炭酸水素イオンとメタケイ酸の溶存濃度の関係から 地下水系を分類しており、足柄平野水系は箱根水系に比 べて、メタケイ酸の溶存濃度は60 mg/L 未満と少ない ものの、炭酸水素イオンの溶存濃度は80-100 mg/L と 多い傾向がある(図3)。箱根水系の水温は15℃台であ るのに対し、足柄平野水系の水温は16℃以上である。 これらの特徴と比較すると、自噴井戸の水質は炭酸水 素イオンが82.4 mg/L、メタケイ酸は56.2 mg/L であ り、水温は17.1℃であることから足柄平野水系の特徴 と一致する。主要溶存成分の組成を示すトリリニアダイ

調査日	2023年3月3日			
気温(℃)	8.5			
水温(℃)	17.1			
pH	7.78			
電気伝導率(mS/m)	19.0			
湧出量(L/min)	5.5			

溶存成分量(mg/l)

N 0.6m 0.6m 5m 5.7m 微動計

図 4 微動計の配置図(極小アレイ配置、異形アレイ配置)

アグラム(図5)によると、本調査の結果(赤色丸印) は、日比野ほか(1999)にて報告されている自噴井戸 の測定結果(青色三角印)と同様のアルカリ土類炭酸塩 (Ca-HCO3型)の領域にプロットされている。自噴量 は5.5 L/min、地表面を基準とした自噴高は51.5 cm で あった。日比野ほか(1999)によると小田原市小台の 調査対象井戸の約8割が自噴量10~49 L/minである ことから、本調査の自噴井戸の自噴量はこの地域の井戸 の中では少ない部類に入る。

3.2. 自噴井戸構造と孔内カメラによる観察

自噴井戸の周辺状況として、内径 50 mm の塩ビパイ プ製井戸管の孔口を囲って内径 47 cm、高さ 60 cm の 陶管が立てられている。井戸管から湧出した地下水は、 陶管内部を満たし、陶管の側面に開けられた吐出口から

陽イオン成分			陰イオン成分			遊離成分		
ナトリウムイオン	(Na ⁺)	8.32	塩化物イオン	(CI ⁻)	4.65	メタケイ酸	(H_2SiO_3)	56.2
カリウムイオン	(K⁺)	1.55	硫酸イオン	(SO4 ²⁻)	13.2	メタホウ酸	(HBO ₂)	0.17
マク・ネシウムイオン	(Mg ²⁺)	7.00	硝酸イオン	(NO ₃)	5.70	遊離二酸化炭素	(CO ₂)	2.20
カルシウムイオン	(Ca ²⁺)	23.7	炭酸水素イオン	(HCO3 ⁻)	82.4			
			炭酸イオン	(CO ₃ ²⁻)	0.40			

流出している。流出した地下水は隣の三段の水舟に導水 され、敷地外を流下する水路へと排水される構造となっ ている(図6、7)。湧出水を生活用水に利用している場 合、一般に地下水くみ上げ用の揚水管が井戸管内に挿入 されていることが多く、孔内の観察や自噴量の測定が困 難である場合が多いが、調査対象の井戸は日常的に利用 されていないため、詳細な調査を行うことができた。孔 内カメラによる計測の結果、地表面を基準とした孔底 の深さは30.2 m であった。地下水を孔内に取り入れる ため、深さ26.48 mから30.2 m(孔底)までの範囲に 8 方向の千鳥状の有孔管が設置されていた(図8)。孔 底部には珪砂の堆積が確認されたが、これは井戸掘削時 に井戸管と地盤の隙間に充填されていたものと考えられ る(図9)。

3.3. 微動アレイ探査による土質調査の結果

微動アレイ探査の結果を図 10 に示す。地盤の S 波速 度は、地表から深さ 25 m 付近までが 200 ~ 300 m/sec 程度、深さ 25 m から 50 m 付近が 450 ~ 500 m/sec で あり、前者が表土・粘土・シルト、後者が砂・礫層か らなることを示す結果であった。深さ 50 m 以深の S 波 速度は、一部低下がみられるが、概ね 450 ~ 500 m/sec であり砂・礫層が厚く堆積していることを示す結果で あった。これらのことから、調査対象地の地下は表土・ 粘土・シルト層の下に砂・礫層が分布しており、その境 界が深さ 25 m 付近にあることが明らかとなった。調査 対象井戸のある小田原市小台地区周辺において、深さ 25 m 以深に厚く堆積する砂・礫層が被圧帯水層として の機能を果たしていると推察され、孔内観察により確認 された自噴井戸の取水深度が概ね深さ 26 m ~ 30 m で あったこととも整合的である。

4. 被圧帯水層と地質縦断面図の比較

足柄平野の地質縦断面図によると、小台地区に隣接す る堀之内地区の地質は厚さ10mほどの表土や砂・礫層 の下に厚さ10~20mの泥・シルト層が分布しており、 その下には再び砂・礫層が厚く堆積している。堀之内地 区にも多くの自噴井戸の分布が確認されており、泥・シ ルト層が不透水層の役割を果たし、その下の被圧帯水層 の形成に寄与していると考えられる。小台地区は、堀之 内地区と同程度の標高にあり、西に約1kmの距離に位 置している。微動アレイ探査の結果から推定された小台 地区の地下構造は、地質縦断面図に示されている堀之内 付近の地質断面と概ね整合的であり、堀之内地区と同様 の機構により自噴帯が形成されているものとみられる。

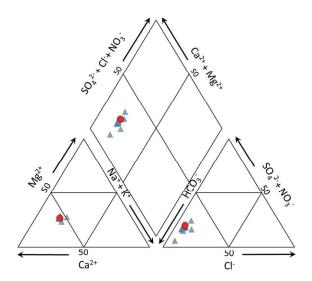


図 5 トリリニアダイアグラム(単位:当量%) 赤色丸印は本調査地点を示し、青色三角印は(日比野ほ か、1999)にて報告されている調査結果14地点を示す。

図6 自噴井戸の外観

図7 自噴井戸の内部

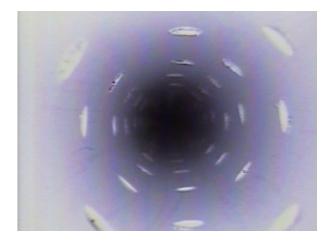


図8 孔内カメラの画像(深さ27m付近)

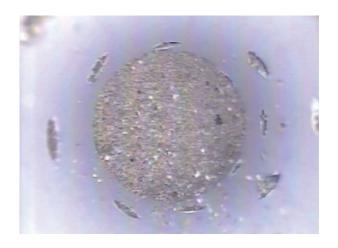


図 9 孔内カメラの画像(深さ 30 m 付近)

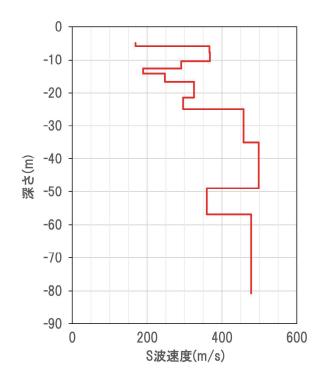


図10 微動アレイ探査の結果

5. まとめ

小田原市小台の自噴井戸について、水質、井戸構造、 地盤構造等の調査を実施した。この井戸から湧出する地 下水の水質は先行研究による足柄平野水系の地下水と同 等であった。調査地点は深さ25m付近を境に粘土・シ ルト層から砂・礫層への地質の変化が見られ、自噴井戸 の有孔管の設置深度と概ね一致していることから、砂・ 礫層が被圧帯水層であることが明らかとなった。自噴井 戸の長期的なモニタリングにより、年間を通した季節的 な変動を捉え、自噴井戸の湧出量や水温に与える影響を 明らかにすることが今後の課題といえる。

謝辞

本調査は自噴井戸の所有者のご協力により実施するこ とができました。ここに記して感謝いたします。

参考文献

- 日比野英俊・粟屋徹・板寺一洋・横山尚秀・長瀬和雄・ 平野富雄(1999)酒匂川右岸地域の自噴井戸,神奈 川県温泉地学研究所報告, Vol.30, No.1-2, 19-32.
- 宮下雄次(2013)神奈川県足柄平野における自噴井の分 布と自噴域の変化,日本地球惑星科学連合2013年 大会,AHW27-03.
- 宮下雄次(2023)極小微動アレイ探査による地下水位測 定手法の検討,日本地球惑星科学連合2023年大会, AHW24-P07.
- 小沢清・荻野喜作・横山尚秀(1982)足柄平野の地質 (その1),神奈川県温泉地学研究所報告, Vol.13, No.5, 83-90.
- 先名重樹・長郁夫・藤原広行 (2014) 微動を用いた浅部 構造探査の高度化 (その2)自動読み取りアルゴリ ズムの適用,日本地球惑星科学連合 2014 年大会, SSS35-P02.
- 藪崎志穂・嶋田純・宮岡邦任・宮下雄次・吉田誠(2000) 安定同位体を用いた足柄平野における地下水流動 系の区分,日本水文科学会誌 Vol.30, No.1, 3-13.
- 横山尚秀・板寺一洋・日比野英俊(1999)足柄平野 の地下水賦存特性と自噴帯,日本水文科学会誌, Vol.29, No.2, 81-92.